单轴循环冲击下弱风化花岗岩的损伤演化

闫雷 刘连生 李仕杰 杨道学 刘伟

闫雷, 刘连生, 李仕杰, 杨道学, 刘伟. 单轴循环冲击下弱风化花岗岩的损伤演化[J]. 爆炸与冲击, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
引用本文: 闫雷, 刘连生, 李仕杰, 杨道学, 刘伟. 单轴循环冲击下弱风化花岗岩的损伤演化[J]. 爆炸与冲击, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
Citation: YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354

单轴循环冲击下弱风化花岗岩的损伤演化

doi: 10.11883/bzycj-2019-0354
基金项目: 国家自然科学基金(51404111);江西省自然科学基金(20192BAB206017);江西理工大学清江优秀人才支持计划(JXUSTQJYX2016007)
详细信息
    作者简介:

    闫 雷(1994- ),男,硕士研究生,yanleijxust@163.com

    通讯作者:

    刘连生(1979- ),男,博士,教授,lianshengliu@jxust.edu.cn

  • 中图分类号: O382

Damage evolution of weakly-weathered granite under uniaxial cyclic impact

  • 摘要: 为研究爆破应力波作用下弱风化花岗岩的力学特性和损伤演化机理,利用直径50 mm的改进分离式Hopkinson压杆装置,开展以不同速度对花岗岩进行单次和等速循环冲击下的实验研究。研究结果表明:单次冲击中,用能量法确定的损伤阈值,可用于循环冲击实验中;不同应变率下弱风化岩石裂纹扩展阶段存在应力松弛平台,且随应变率升高而愈发明显,峰值应力与应变率呈正相关。等速循环冲击中,最大应力、应变与冲击速度呈正相关,与岩样累积冲击总次数呈负相关;损伤演化具有3个阶段呈倒S形,由其构建的双参数损伤演化模型拟合效果理想,且具有物理意义;利用模型中的参数αβ可计算中值点处的损伤度和相对循环次数,且与冲击速度正相关;不同损伤变量计算的损伤演化模型不同,合理定义损伤变量是必要的。
  • 图  1  加工好的部分岩石试样

    Figure  1.  Processed weakly-weathered granite specimens

    图  2  SHPB实验系统

    Figure  2.  SHPB experimental system

    图  3  岩样E4动态力平衡检验

    Figure  3.  Dynamic stress balance check for specimen E4

    图  4  加载段单位体积能量计算

    Figure  4.  Volume energy calculation for load segment

    图  5  不同速度单次冲击的应力-应变曲线及破坏形式

    Figure  5.  Stress-strain curves and failure modes of the specimens subjected to single impact at different velocities

    图  6  不同速度循环冲击岩样的应力-应变曲线及其破坏形式

    Figure  6.  Stress-strain curves and failure modes of different specimens subjected to cyclic impact at different velocities

    图  7  不同冲击速度下不同岩样最大轴向应变的演化

    Figure  7.  Evolution of the maximum axial strain with cyclic-impact number at different impact velocitiesfor different specimens

    图  8  不同损伤定义下的损伤演化模型

    Figure  8.  The damage evolution models represented by different damage variables

    图  9  参数α和β对损伤累积模型的影响

    Figure  9.  Effects of parameters α and β on the damage accumulation model

    表  1  单次冲击和首次循环冲击实验结果

    Table  1.   Single impact and first cycle impact test results

    编号v/(m·s−1)Wi/JL/Dneff/%ρ/(g·cm−3)vl/(m·s−1)σdc/MPa$ \dot \varepsilon$/s-1N
    A13.69 8.851.022.352 4773 62824.7622.11 1
    A34.0612.801.042.472 4563 60127.0129.04 1
    B15.0420.031.032.502 4553 59436.0635.19 1
    C15.9727.251.032.322 4343 63438.9344.61 1
    D56.9437.921.032.452 4573 60542.1853.67 1
    E17.9252.651.032.362 4723 62559.3162.16 1
    F1-13.9210.411.032.412 4463 61431.3116.4217
    G3-14.9815.391.022.372 4263 62336.8426.5911
    H2-15.8725.221.042.552 4063 58349.0035.99 5
    下载: 导出CSV
  • [1] 沈滔, 李海东, 靳杨, 等. 赣南地区花岗岩风化壳中稀土元素特征探讨 [J]. 稀土, 2016, 37(2): 62–67. DOI: 10.16533/J.CNKI.15-1099/TF.201602010.

    SHEN T, LI H D, JIN Y, et al. Discussion on the characteristics of rare earth elements from weathering crust of granites in south Jiangxi [J]. Chinese Rare Earths, 2016, 37(2): 62–67. DOI: 10.16533/J.CNKI.15-1099/TF.201602010.
    [2] LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218. DOI: 10.1016/j.ijrmms.2010.11.016.
    [3] 李地元, 孙小磊, 周子龙, 等. 多次冲击荷载作用下花岗岩动态累计损伤特性 [J]. 实验力学, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.

    LI D Y, SUN X L, ZHOU Z L, et al. On the dynamic accumulated damage characteristics of granite subjected to repeated impact load action [J]. Journal of Experimental Mechanics, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.
    [4] YAN L, YI W H, LIU L S, et al. Blasting-induced permeability enhancement of ore deposits associated with low-permeability weakly weathered granites based on the split Hopkinson pressure bar [J]. Geofluids, 2018, 2018: 4267878. DOI: 10.1155/2018/4267878.
    [5] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [6] 金解放, 李夕兵, 殷志强, 等. 循环冲击下波阻抗定义岩石损伤变量的研究 [J]. 岩土力学, 2011, 32(5): 1385–1393; 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.

    JIN J F, LI X B, YIN Z Q, et al. A method for defining rock damage variable by wave impedance under cyclic impact loadings [J]. Rock and Soil Mechanics, 2011, 32(5): 1385–1393; 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.
    [7] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [8] 金解放, 李夕兵, 邱灿, 等. 岩石循环冲击损伤演化模型及静载荷对损伤累积的影响 [J]. 岩石力学与工程学报, 2014, 33(8): 1662–1671. DOI: 10.13722/j.cnki.jrme.2014.08.017.

    JIN J F, LI X B, QIU C, et al. Evolution model for damage accumulation of rock under cyclic impact loadings and effect of static loads on damage evolution [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1662–1671. DOI: 10.13722/j.cnki.jrme.2014.08.017.
    [9] 王春, 唐礼忠, 程露萍, 等. 三维高静载频繁动态扰动时岩石损伤特性及本构模型 [J]. 岩土力学, 2017, 38(8): 2286–2296; 2305. DOI: 10.16285/j.rsm.2017.08.017.

    WANG C, TANG L Z, CHENG L P, et al. Damage characteristics and constitutive model of rock under three-dimensional high static load and frequent dynamic disturbance [J]. Rock and Soil Mechanics, 2017, 38(8): 2286–2296; 2305. DOI: 10.16285/j.rsm.2017.08.017.
    [10] 朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [11] LI S H, ZHU W C, NIU L L, et al. Dynamic characteristics of green sandstone subjected to repetitive impact loading: phenomena and mechanisms [J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1921–1936. DOI: 10.1007/s00603-018-1449-6.
    [12] 王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [13] DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8.
    [14] LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [15] LI X B, LOK T S, ZHAO J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1055–1060. DOI: 10.1016/S1365-1609(00)00037-X.
    [16] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
    [17] 王晓燕, 卢芳云, 林玉亮. SHPB实验中端面摩擦效应研究 [J]. 爆炸与冲击, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.

    WANG X Y, LU Y F, LING Y L. Study on interfacial friction effect in the SHPB tests [J]. Explosion and Shock Waves, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.
    [18] WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [19] 葛修润, 任建喜, 蒲毅彬, 等. 岩石疲劳损伤扩展规律CT细观分析初探 [J]. 岩土工程学报, 2001, 23(2): 191–195. DOI: 10.3321/j.issn:1000-4548.2001.02.013.

    GE X R, REN J X, PU Y B, et al. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191–195. DOI: 10.3321/j.issn:1000-4548.2001.02.013.
    [20] 王宇, 李晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨 [J]. 岩石力学与工程学报, 2014, 33(2): 264–275. DOI: 10.13722/j.cnki.jrme.2014.02.003.

    WANG Y, LI X, WU Y F, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264–275. DOI: 10.13722/j.cnki.jrme.2014.02.003.
    [21] 梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究 [J]. 岩石力学与工程学报, 2012, 31(9): 1830–1838. DOI: 10.3969/j.issn.1000-6915.2012.09.014.

    LIANG C Y, LI X, WANG S X, et al. Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1830–1838. DOI: 10.3969/j.issn.1000-6915.2012.09.014.
    [22] NICKSIAR M, MARTIN C D. Crack initiation stress in low porosity crystalline and sedimentary rocks [J]. Engineering Geology, 2013, 154: 64–76. DOI: 10.1016/j.enggeo.2012.12.007.
    [23] 宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595. DOI: 10.13722/j.cnki.jrme.2017.1239.

    GONG F Q, WANG J, LI X B. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595. DOI: 10.13722/j.cnki.jrme.2017.1239.
    [24] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [25] 李树刚, 陈高峰, 双海清, 等. 加载速率和初始损伤对砂岩能量演化影响的试验研究 [J]. 采矿与安全工程学报, 2019, 36(2): 373–380. DOI: 10.13545/j.cnki.jmse.2019.02.021.

    LI S G, CHEN G F, SHUANG H Q, et al. Experimental study on effect of loading rate and initial damage on energy evolution of sandstone [J]. Journal of Mining and Safety Engineering, 2019, 36(2): 373–380. DOI: 10.13545/j.cnki.jmse.2019.02.021.
    [26] 文志杰, 田雷, 蒋宇静, 等. 基于应变能密度的非均质岩石损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1332–1343. DOI: 10.13722/j.cnki.jrme.2018.1125.

    WEN Z J, TIAN L, JIANG Y J, et al. Research on damage constitutive model of inhomogeneous rocks based on strain energy density [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1332–1343. DOI: 10.13722/j.cnki.jrme.2018.1125.
    [27] ZHANG J X, WONG T F, DAVIS D M. Micromechanics of pressure‐induced grain crushing in porous rocks [J]. Journal of Geophysical Research, 1990, 95(B1): 341–352. DOI: 10.1029/JB095iB01p00341.
    [28] XIAO J Q, DING D X, XU G, et al. Inverted S-shaped model for nonlinear fatigue damage of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 643–648. DOI: 10.1016/j.ijrmms.2008.11.002.
    [29] LIU Y, DAI F, DONG L, et al. Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 47–68. DOI: 10.1007/s00603-017-1327-7.
    [30] XIAO J Q, DING D X, JIANG F L, et al. Fatigue damage variable and evolution of rock subjected to cyclic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 461–468. DOI: 10.1016/j.ijrmms.2009.11.003.
    [31] YAN L, LIU L S, ZHANG S H, et al. Testing of weakly weathered granites of different porosities using a split Hopkinson pressure bar technique [J]. Advances in Civil Engineering, 2018, 2018: 5267610.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4825
  • HTML全文浏览量:  1640
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-15
  • 修回日期:  2019-10-23
  • 网络出版日期:  2020-04-25
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回