弧形折纸模式薄壁结构的压缩变形与能量吸收

张天辉 邓健强 刘志芳 李世强

张天辉, 邓健强, 刘志芳, 李世强. 弧形折纸模式薄壁结构的压缩变形与能量吸收[J]. 爆炸与冲击, 2020, 40(7): 071405. doi: 10.11883/bzycj-2019-0355
引用本文: 张天辉, 邓健强, 刘志芳, 李世强. 弧形折纸模式薄壁结构的压缩变形与能量吸收[J]. 爆炸与冲击, 2020, 40(7): 071405. doi: 10.11883/bzycj-2019-0355
ZHANG Tianhui, DENG Jianqiang, LIU Zhifang, LI Shiqiang. Compression deformation and energy absorption of thin-walled structures with arc-shaped origami patterns[J]. Explosion And Shock Waves, 2020, 40(7): 071405. doi: 10.11883/bzycj-2019-0355
Citation: ZHANG Tianhui, DENG Jianqiang, LIU Zhifang, LI Shiqiang. Compression deformation and energy absorption of thin-walled structures with arc-shaped origami patterns[J]. Explosion And Shock Waves, 2020, 40(7): 071405. doi: 10.11883/bzycj-2019-0355

弧形折纸模式薄壁结构的压缩变形与能量吸收

doi: 10.11883/bzycj-2019-0355
基金项目: 国家自然科学基金(11602161,11772216)
详细信息
    作者简介:

    张天辉(1992- ),男,硕士,zhangtianhui1234@163.com

    通讯作者:

    李世强(1986- ),男,博士,副教授,lishiqiang@tyut.edu.cn

  • 中图分类号: O347.1

Compression deformation and energy absorption of thin-walled structures with arc-shaped origami patterns

  • 摘要: 选用PolyMaxTM PLA为试样材料,利用3D打印技术制备了弧形折纸薄壁管件。基于准静态轴向压缩实验,运用ABAQUS软件对弧形折纸薄壁管件轴向准静态压缩和冲击行为进行了有限元计算,探讨了其变形模式和能量吸收特性,分析了预折角和薄壁单胞管件阵列数量对其压溃模式及能量吸收的影响。有限元计算结果与实验结果吻合较好。薄壁管件的变形过程可分为4个阶段:初始压溃阶段、预折角塑性旋转阶段、腹板塑性屈曲阶段和完全压溃密实化阶段。弧形折痕的引入能够有效地降低薄壁管件在压缩过程中的初始压溃载荷峰值,减小冲击载荷的振荡幅值。对比了高度相等、质量近似相等的方管与弧形折纸薄壁管在不同冲击速度下的压缩变形与能量吸收。在准静态压缩作用下,对于单胞模型,仅有折痕倾角为70°的模型的比吸能优于方管;对于多胞管件阵列模型,方管的比吸能均优于折纸管。折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。在动态冲击压缩下,阵列方管的比吸能均优于阵列折纸管。当冲击速度为10 m/s时,折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。当冲击速度为20 m/s时,仅有折痕倾角为50°的模型的压缩力效率和比总体效率优于方管。
  • 图  1  弧形折痕薄壁管建模过程

    Figure  1.  The modeling process of an origami thin-walled tube with the arc-shape pattern

    图  2  利用PolyMaxTM PLA 打印的哑铃形试件的拉伸真实应力应变关系及打印工艺

    Figure  2.  True stress-strain relation of a dumbbell-shaped sample printed with PolyMaxTM PLA and the corresponding printing process

    图  3  模拟与实验压缩载荷-位移曲线对比

    Figure  3.  Comparison of compressive load-displacement curves between simulation and experimentl

    图  4  弧形折痕薄壁管状结构单胞有限元模型

    Figure  4.  The finite element model of a curved origami thin-walled tube

    图  5  网格敏感性验证

    Figure  5.  Validation of mesh sensitivity

    图  6  有限元算法验证

    Figure  6.  Verification of the finite element algorithm

    图  7  不同单胞模型的应力-应变曲线

    Figure  7.  Stress-strain curves of different single-cell models

    图  8  面内方向阵列个数为2×2的阵列模型的应力-应变曲线

    Figure  8.  Stress-strain curves corresponding to the models with the number n of in-plane arrays equal to 2×2

    图  9  面内方向阵列个数不同的A60°模型的应力-应变曲线

    Figure  9.  Stress-strain curves of different in-plane arrays number of A60° models

    图  10  不同冲击速度下,不同阵列模型的应力-应变曲线

    Figure  10.  Stress-strain curves of different models under different impact velocities

    图  11  准静态压缩下不同的单胞薄壁管比吸能随位移的变化

    Figure  11.  Specific energy absorption varying with displacement for different single-cell thin-walled tubes under quasi-static compression

    图  12  不同冲击速度下面内方向阵列个数相同的不同薄壁管结构比吸能的对比

    Figure  12.  Comparison of specific energy absorption for different thin-walled tubes with the same number of in-plane arrays under different impact velocities

    图  13  不同薄壁管模型压缩力效率的对比

    Figure  13.  Comparison of crush force efficiencies for different thin-walled tube models

    图  14  压缩力效率随压缩位移的变化

    Figure  14.  Crush force efficiency varying with compressive displacement

    图  15  不同薄壁管模型比总体效率的对比

    Figure  15.  Comparison of specific total efficiencies for different thin-walled tube models

    图  16  比总体效率随压缩位移的变化

    Figure  16.  Specific total efficiency varying with compressive displacement

    表  1  模型参数

    Table  1.   The parameters of the models

    模型单胞质量/gh/mmw/mml/mmτ/mmc/mma/mmh0/mmξ /(°)α/(°)θ/(°)β/(°)
    A50°8.65304045.231.101014.2610.9260504261
    A60°8.66304041.571.201011.9810.3760605571
    A70°8.59304038.861.251010.7910.1460706778
    SQU8.66304041.891.47
    下载: 导出CSV

    表  2  不同模型的初始压溃载荷峰值

    Table  2.   Initial peak crushing loads of different models

    冲击速度/(m·s−1)n载荷/kN
    A50°A60°A70°SQU
    11×1 0.23 0.65 1.72 6.59
    2×2 1.72 3.91 8.4732.46
    102×2 4.92 9.0613.2242.84
    202×210.4719.7723.7246.14
    下载: 导出CSV
  • [1] LEE T U, YOU Z, GATTAS J M. Elastica surface generation of curved-crease origami [J]. International Journal of Solids and Structures, 2018, 136-137: 13–27. DOI: 10.1016/j.ijsolstr.2017.11.029.
    [2] SINGACE A A, EL-SOBKY H. Behaviour of axially crushed corrugated tubes [J]. International Journal of Mechanical Sciences, 1997, 39(3): 249–268. DOI: 10.1016/S0020-7403(96)00022-7.
    [3] ZHANG X, CHENG G D, YOU Z, et al. Energy absorption of axially compressed thin-walled square tubes with patterns [J]. Thin-Walled Structures, 2007, 45(9): 737–746. DOI: 10.1016/j.tws.2007.06.004.
    [4] ZHAO Z A, KUANG X, WU J T, et al. 3D printing of complex origami assemblages for reconfigurable structures [J]. Soft Matter, 2018, 14(39): 8051–8059. DOI: 10.1039/C8SM01341A.
    [5] MA J Y, YOU Z. Energy absorption of thin-walled square tubes with a prefolded origami pattern: Part I: geometry and numerical simulation [J]. Journal of Applied Mechanics, 2014, 81(1): 011003. DOI: 10.1115/1.4024405.
    [6] SONG J, CHEN Y, LU G X. Axial crushing of thin-walled structures with origami patterns [J]. Thin-Walled Structures, 2012, 54: 65–71. DOI: 10.1016/j.tws.2012.02.007.
    [7] ZHOU C H, ZHOU Y, WANG B. Crashworthiness design for trapezoid origami crash boxes [J]. Thin-Walled Structures, 2017, 117: 257–267. DOI: 10.1016/j.tws.2017.03.022.
    [8] 周昳鸣, 周才华, 王博. 预折纹吸能管的多样性可竞争优化设计 [J]. 振动与冲击, 2016, 35(19): 143–147. DOI: 10.13465/j.cnki.jvs.2016.19.024.

    ZHOU Y M, ZHOU C H, WANG B. Optimization design for pre-fold energy absorption tubes [J]. Journal of Vibration and Shock, 2016, 35(19): 143–147. DOI: 10.13465/j.cnki.jvs.2016.19.024.
    [9] 郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.
    [10] HOU D G, CHEN Y, MA J Y, et al. Axial crushing of thin-walled tubes with kite-shape pattern [C] // Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston, Massachusetts, USA: American Society of Mechanical Engineers, 2015: 5. DOI: 10.1115/DETC2015-46671.
    [11] MA J Y, HOU D G, CHEN Y, et al. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation [J]. Thin-Walled Structures, 2016, 100: 38–47. DOI: 10.1016/j.tws.2015.11.023.
    [12] LI S Q, LI X, WANG Z H, et al. Sandwich panels with layered graded aluminum honeycomb cores under blast loading [J]. Composite Structures, 2017, 173: 242–254. DOI: 10.1016/j.compstruct.2017.04.037.
    [13] LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. DOI: 10.1016/j.compositesa.2015.09.025.
    [14] QIAO J X, CHEN C Q. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids and Structures, 2016, 85−86: 57–66. DOI: 10.1016/j.ijsolstr.2016.02.003.
    [15] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509–534. DOI: 10.1016/S0734-743X(99)00036-6.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  4831
  • HTML全文浏览量:  1985
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-15
  • 修回日期:  2019-12-19
  • 网络出版日期:  2020-06-25
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回