长管强约束条件下压装PBX炸药点火实验研究

邱天 文尚刚 李涛 胡海波 傅华 尚海林

邱天, 文尚刚, 李涛, 胡海波, 傅华, 尚海林. 长管强约束条件下压装PBX炸药点火实验研究[J]. 爆炸与冲击, 2020, 40(1): 011405. doi: 10.11883/bzycj-2019-0360
引用本文: 邱天, 文尚刚, 李涛, 胡海波, 傅华, 尚海林. 长管强约束条件下压装PBX炸药点火实验研究[J]. 爆炸与冲击, 2020, 40(1): 011405. doi: 10.11883/bzycj-2019-0360
QIU Tian, WEN Shanggang, LI Tao, HU Haibo, FU Hua, SHANG Hailin. Experimental study on initiated reaction evolution of pressed explosives in long thick wall cylinder confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011405. doi: 10.11883/bzycj-2019-0360
Citation: QIU Tian, WEN Shanggang, LI Tao, HU Haibo, FU Hua, SHANG Hailin. Experimental study on initiated reaction evolution of pressed explosives in long thick wall cylinder confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011405. doi: 10.11883/bzycj-2019-0360

长管强约束条件下压装PBX炸药点火实验研究

doi: 10.11883/bzycj-2019-0360
详细信息
    作者简介:

    邱 天(1991- ),男,博士研究生,qiutiancn@foxmail.com

    通讯作者:

    胡海波(1964- ),男,博士,研究员,博士生导师,huhaibo@caep.cn

  • 中图分类号: O381

Experimental study on initiated reaction evolution of pressed explosives in long thick wall cylinder confinement

  • 摘要: 为探究压装炸药PBX-A在较强约束条件下、在药柱一端使用点火药引燃后能否发生燃烧转爆轰,在传统DDT管的基础上重新设计了特定位置约束增强的厚壁钢柱壳管实验装置,利用多路PDV诊断技术,配套高速摄影记录对点火药引燃炸药实验过程中的柱壳膨胀、断裂特性等实验现象进行了全过程连续监测。对比由爆轰驱动的相同装药条件下实验现象及对应过程物理状态的区别,发现:爆轰实验和点火实验 的总反应时间历程存在数量级的差别;柱壳上各个测点速度历程反映出装置内部炸药反应引起的压力增长历程特征,以及炸药反应的传播过程均存在明显差异。分析表明,在较强约束条件下,典型压装炸药PBX-A在一端使用点火药引燃后的反应行为实际是以高温、高压反应产物沿装药缝隙对流,炸药表面的层流燃烧及其伴随的结构响应行为为主要表现形态;从反应压力水平及其增长的时间历程来看,炸药基体中没有形成冲击波,因而无法实现从冲击到爆轰的转变。
  • 图  1  实验装置

    Figure  1.  Experimental set-up

    图  2  测试系统示意图

    Figure  2.  Schematic diagram of the testing system

    图  3  点火实验PDV探针及应变片测点位置(单位:mm)

    Figure  3.  Measuring points position of PDV probes and strain gauges in initiation reaction(unit: mm)

    图  4  实验系统布局示意图

    Figure  4.  Diagram of experimental system

    图  5  爆轰标定实验PDV探针测点位置(单位: mm)

    Figure  5.  Measuring points position of PDV probes in detonation reaction (unit: mm)

    图  6  实验过程典型图像

    Figure  6.  Typical experimental photographs

    图  7  PDV测得实验装置各处的运动速度历程

    Figure  7.  Velocity profiles measured by PDV

    图  8  点火实验应变片测试结果

    Figure  8.  Hoop strain measurements of initiation reaction

    图  9  点火实验反应后远区测得的空气冲击波超压曲线

    Figure  9.  Air blast overpressure profiles of initiation reaction

    图  10  回收的实验装置碎片

    Figure  10.  Fragments in recovery experiments

  • [1] 张震宇, 田占东, 陈军, 等. 爆轰物理[M]. 2版. 长沙: 国防科技大学出版社, 2016: 122−113.
    [2] ASAY B. Shock wave science and technology reference library, Vol.5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 11−488.
    [3] MACEK A. Transition from deflagration to detonation in cast explosive [J]. Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
    [4] TARVER C M, GOODALE T C, SHAW R, et al. Deflagration-to-detonation transition studiesfor two potential isomeric cast primary explosives [C] // Sigmund Jacobs. 6th Symposium(International) on Detonation. Coronado, Califirnia, United States, 1976: 231−249.
    [5] JACOBS S. Personal communication with C. M. Tarver. [C] // Sigmund Jacobs. 6th Symposium (International) on Detonation. Coronado, Califirnia, United States, 1976: 249.
    [6] BERNECKER R R, SANDUSKY H W, CLAIRMONT Jr A R. Deflagration-to-detonation transition studies of porous explosivecharges in plastic tubes [C] // James M. Short. Proceeding of the 7th Symposium (International) on Detonation. Annapolis, Maryland, United States, 1981: 119−138.
    [7] SANDUSKY H W, BERNECKER R R. Compressive reaction in porous beds of energetic materials [C] // James M Short. 8th Symposium (International) on Detonation. Albuquerque, New Mexico, United States, 1985: 881−891.
    [8] CAMPBELL A W. Deflagration-to-detonation in granular HMX: LA-UR 80-2016 [R]. Los Alamos Scientific Laboratory, 1980.
    [9] 张泰华, 白以龙, 王世英, 等. 多孔和铸装高能推进剂的燃烧转爆轰 [J]. 爆炸与冲击, 2000, 20(4): 296–302.

    ZHANG T H, BAI Y L, WANG S Y, et al. Deflagration-to-detonationtransition in porous propellants and cast propellants [J]. Explosion and Shock Waves, 2000, 20(4): 296–302.
    [10] 赵同虎, 张新彦, 李斌, 等. 颗粒状HMX、RDX的燃烧转爆轰实验研究 [J]. 含能材料, 2003, 11(4): 187–190. DOI: 10.3969/j.issn.1006-9941.2003.04.003.

    ZHAO T H, ZHANG X Y, LI B, et al. Experimental study on the deflagration-to-detonation transition for granular HMX, RDX [J]. Chinese Journal of Energetic Materials, 2003, 11(4): 187–190. DOI: 10.3969/j.issn.1006-9941.2003.04.003.
    [11] MAIENSCHEIN J L, CHANDLER J B. Burn rates of pristine and degraded explosives at elevated temperatures and pressures: UCRL-JC-127993 [R]. 1998.
    [12] 黄毅民, 冯长根, 龙新平. JOB-9003炸药燃烧转爆轰现象研究 [J]. 火炸药学报, 2002, 1: 54–58. DOI: 10.3969/j.issn.1007-7812.2002.01.017.

    HUANG Y M, FENG C G, LONG X P. Deflagration to detonation transition behavior of explosive JOB-9003 [J]. Chinese Journal of Explosives & Propellants, 2002, 1: 54–58. DOI: 10.3969/j.issn.1007-7812.2002.01.017.
    [13] 王建, 文尚刚. 以HMX为基的两种压装高密度炸药的燃烧转爆轰实验研究 [J]. 高压物理学报, 2009, 23(6): 441–446. DOI: 10.3969/j.issn.1000-5773.2009.06.007.

    WANG J, WEN S G. Experimental study on deflagration-to-detonation transitionin two pressed high-density explosives [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 441–446. DOI: 10.3969/j.issn.1000-5773.2009.06.007.
    [14] 王建, 文尚刚, 何智, 等. 压装高能炸药的燃烧转爆轰实验研究 [J]. 火炸药学报, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.

    WANG J, WEN S G, HE Z, et al. Experimental study on deflagration-to-detonation transition in pressed high-density explosives [J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.
    [15] 代晓淦, 王娟, 文玉史, 等. PBX-2炸药加热条件下燃烧转爆轰特性 [J]. 含能材料, 2013(5): 649–652. DOI: 10.3969/j.issn.1006-9941.2013.05.017.

    DAI X G, WANG J, WEN Y S, et al. Deflagration to detonation transition on characteristics for heated PBX-2 [J]. Chinese Journal of Energetic Materials, 2013(5): 649–652. DOI: 10.3969/j.issn.1006-9941.2013.05.017.
    [16] JACKSON S I, HILL L G, BERGHOUT H L, et al. Runaway reaction in a solid explosive containing a single crack [C] // Ruth Doherty. 13th International Detonation Symposium. 2006: 646−655.
    [17] LEURET F, CHAISSÉ F, PRESLES H N, et al. Experimental study of the low velocity detonation regime during the deflagration to detonation transition in a high density explosive [C] // James M Short. Proceedings of 11th International Symposium on Detonation. Snowmass, Colorado, 1998: 693−701.
    [18] 文尚刚. 炸药缝隙中燃烧模式转化及反应烈度增长行为研究[R]. 四川绵阳: 中国工程物理研究院, 2017.
    [19] SHANG H L, YANG J, LI T, et al. Convective burning in confined explosive cracks of HMX-based PBX under non-shock initiation [C] // Shelley Cohen. 16th International Detonation Symposium. Cambridge, Maryland, United states, 2018.
  • 加载中
图(10)
计量
  • 文章访问数:  4942
  • HTML全文浏览量:  1580
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-10-29
  • 网络出版日期:  2019-10-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回