爆炸加载下混凝土表面的裂纹扩展

崔新男 汪旭光 王尹军 陈志远

崔新男, 汪旭光, 王尹军, 陈志远. 爆炸加载下混凝土表面的裂纹扩展[J]. 爆炸与冲击, 2020, 40(5): 052203. doi: 10.11883/bzycj-2019-0364
引用本文: 崔新男, 汪旭光, 王尹军, 陈志远. 爆炸加载下混凝土表面的裂纹扩展[J]. 爆炸与冲击, 2020, 40(5): 052203. doi: 10.11883/bzycj-2019-0364
CUI Xinnan, WANG Xuguang, WANG Yinjun, CHEN Zhiyuan. External crack propagation of concrete surface under explosive loading[J]. Explosion And Shock Waves, 2020, 40(5): 052203. doi: 10.11883/bzycj-2019-0364
Citation: CUI Xinnan, WANG Xuguang, WANG Yinjun, CHEN Zhiyuan. External crack propagation of concrete surface under explosive loading[J]. Explosion And Shock Waves, 2020, 40(5): 052203. doi: 10.11883/bzycj-2019-0364

爆炸加载下混凝土表面的裂纹扩展

doi: 10.11883/bzycj-2019-0364
基金项目: 国家自然科学基金(51664007);中国工程院咨询研究项目(2018-XY-12)
详细信息
    作者简介:

    崔新男(1986- ),男,博士研究生,工程师,chester_tsui@sina.cn

    通讯作者:

    汪旭光(1939- ),男,博士,教授,243458313@qq.com

  • 中图分类号: O389; TD235

External crack propagation of concrete surface under explosive loading

  • 摘要: 为深入研究内爆加载下岩土类材料的破坏机理,提出了一种新的爆炸裂纹检测算法,采用数字图像相关方法测量表面位移场和应变场,建立了裂纹扩展和扩张模型,并通过混凝土内爆试验观测裂纹扩展过程,研究了裂纹长度扩展与宽度扩张规律。结果表明,裂纹长度扩展是应力波和爆生气体共同作用的结果,裂纹最大扩展速度为225.95 m/s,平均速度为122.27 m/s,裂纹总长159.92 mm,长度扩展止于1.75 ms;裂纹的张开由气体主导,最大宽度1.59 mm,作用时间长达4.5 ms;拉应变集中区先于裂纹出现,其形状决定了裂纹的走向和趋势,爆炸加载下断裂过程区长度为骨料粒径的8~9倍。
  • 图  1  裂纹检测过程

    Figure  1.  Crack detection process

    图  2  混凝土表面裂纹扩展试验系统

    Figure  2.  Experiment system for crack propagation of concrete surface

    图  3  裂纹扩展过程

    Figure  3.  Crack propagation progress

    图  4  裂纹长度和扩展速度曲线

    Figure  4.  Curves of crack length and propagation velocity

    图  5  水平位移场的演化过程

    Figure  5.  Evolution of horizontal displacement field

    图  6  裂纹张开宽度随时间和裂纹长度的变化曲线

    Figure  6.  Curves of crack width with time and crack length

    图  7  最大主应变场的演化过程

    Figure  7.  Evolutionary process of maximum principle strain field

    图  8  断裂过程区发展过程

    Figure  8.  Propagation of fracture zone

    表  1  混凝土模型物理力学参数

    Table  1.   The physical and mechanical parameters of the concrete model

    混凝土标号容重/(kg·m−3)抗压强度/MPa弹性模量/GPa抗拉强度/MPa泊松比
    C302.7×10342.531.23.20.3
    下载: 导出CSV

    表  2  断裂过程区尺寸

    Table  2.   Sizes of fracture process zone

    时间/msFPZ宽度/mmFPZ长度/mm
    0.5033.82132.64
    0.7547.17129.30
    0.8048.95132.16
    1.0052.51
    2.0050.73
    3.0049.84
    4.0051.62
    下载: 导出CSV
  • [1] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 68–77. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 68–77. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [2] 周磊, 朱哲明, 王蒙, 等. 致密砂岩巷道模型试件动态起裂及止裂全过程分析 [J]. 爆炸与冲击, 2019, 39(9): 095101-1–095101-11. DOI: 10.11883/bzycj-2018-0073.

    ZHOU L, ZHU Z M, WANG M, et al. Analysis on whole dynamical fracture process of tight sandstone tunnel model under imapact loading [J]. Explosion and Shock Waves, 2019, 39(9): 095101-1–095101-11. DOI: 10.11883/bzycj-2018-0073.
    [3] 刘超, 崔娜. 不同地应力下煤体爆破裂纹扩展规律研究 [J]. 煤炭技术, 2018, 37(6): 3–5. DOI: 10.13301/j.cnki.ct.2018.06.002.

    LIU C, CUI N. Study on crack propagation in coal mass blasting under different in-situ stress [J]. Coal Technology, 2018, 37(6): 3–5. DOI: 10.13301/j.cnki.ct.2018.06.002.
    [4] 钟波波, 李宏, 张永彬. 爆炸荷载作用下岩石动态裂纹扩展的数值模拟 [J]. 爆炸与冲击, 2016, 36(6): 825–831. DOI: 10.11883/1001-1455(2016)06-0825-07.

    ZHONG B B, LI H, ZHANG Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading [J]. Explosion and Shock Waves, 2016, 36(6): 825–831. DOI: 10.11883/1001-1455(2016)06-0825-07.
    [5] 穆朝民, 潘飞. 煤体在爆炸荷载和地应力耦合作用下裂纹扩展的数值模拟 [J]. 高压物理学报, 2013, 27(3): 403–410. DOI: 10.11858/gywlxb.2013.03.014.

    MU C M, PAN F. Numerical study on the damage of the coal under blasting loads coupled with geostatic stress [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 403–410. DOI: 10.11858/gywlxb.2013.03.014.
    [6] 徐向宇, 姚邦华, 魏建平, 等. 煤层预裂爆破应力波传播规律及增透机理模拟研究 [J]. 爆破, 2016, 33(2): 32–38. DOI: 10.3963/j.issn.1001-487X.2016.02.007.

    XU X Y, YAO B H, WEI J P, et al. Numerical study of stress wave propagation behavior and permeability-increasing mechanism of pre-splitting blasting in coal seam [J]. Blasting, 2016, 33(2): 32–38. DOI: 10.3963/j.issn.1001-487X.2016.02.007.
    [7] LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics & Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [8] 刘瑞峰, 朱哲明, 李盟, 等. 爆炸载荷下Ⅰ型裂纹的起裂及扩展规律研究 [J]. 岩石力学与工程学报, 2018, 37(2): 392–402. DOI: 10.13722/j.cnki.jrme.2017.1126.

    LIU R F, ZHU Z M, LI M, et al. Initiation and propagation of mode I crack under blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 392–402. DOI: 10.13722/j.cnki.jrme.2017.1126.
    [9] SHI W Z, WU Y H, WU L. Quantitative analysis of the projectile impact on rock using infrared thermography [J]. International Journal of Impact Engineering, 2007, 34(5): 990–1002. DOI: 10.1016/j.ijimpeng.2006.03.002.
    [10] DANIEL I M, ROWLANDS R E. On wave and fracture propagation in rock media [J]. Experimental Mechanics, 1975, 15(12): 449–457. DOI: 10.1007/BF02318359.
    [11] 杨立云, 杨仁树, 许鹏. 新型数字激光动态焦散线实验系统及其应用 [J]. 中国矿业大学学报, 2013, 42(2): 188–194. DOI: 10.13247/j.cnki.jcumt.2013.02.005.

    YANG L Y, YANG R S, XU P. Caustics method combined with laser & digital high-speed camera and its applications [J]. Journal of China University of Mining & Technology, 2013, 42(2): 188–194. DOI: 10.13247/j.cnki.jcumt.2013.02.005.
    [12] 杨仁树, 苏洪. 爆炸荷载下含预裂缝的裂纹扩展实验研究 [J]. 煤炭学报, 2019, 44(2): 482–489. DOI: 10.13225/j.cnki.jccs.2018.0110.

    YANG R S, SU H. Experimental study on crack propagation with pre-crack under explosion load [J]. Journal of China Coal Society, 2019, 44(2): 482–489. DOI: 10.13225/j.cnki.jccs.2018.0110.
    [13] 杨仁树, 左进京, 肖成龙, 等. 爆炸载荷作用下静裂纹对运动裂纹扩展影响的实验研究 [J]. 振动与冲击, 2018, 37(13): 65–70. DOI: 10.13465/j.cnki.jvs.2018.13.010.

    YANG R S, ZUO J J, XIAO C L, et al. Tests for interaction between static crack and dynamic one under explosion loading [J]. Journal of Vibration and Shock, 2018, 37(13): 65–70. DOI: 10.13465/j.cnki.jvs.2018.13.010.
    [14] SIVIOUR C R, GRANTHAM S G. High resolution optical measurements of specimen deformation in the split Hopkinson pressure bar [J]. Journal of Photographic Science, 2009, 57(6): 333–343. DOI: 10.1179/174313109X454792.
    [15] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(8): 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [16] 申海艇, 蒋招绣, 王贝壳, 等. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用 [J]. 爆炸与冲击, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.

    SHEN H T, JIANG Z X, WANG B K, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation [J]. Explosion and Shock Waves, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.
    [17] 徐振洋, 杨军, 郭连军. 爆炸聚能作用下混凝土试件劈裂的高速3D DIC实验 [J]. 爆炸与冲击, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.

    XU Z Y, YANG J, GUO L J. Study of the splitting crack propagation morphology using high-speed 3D DIC [J]. Explosion and Shock Waves, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.
    [18] 杨立云, 张蓝月, 丁晨曦, 等. 超高速数字图像相关实验系统及其在爆炸研究中的应用 [J]. 科技导报, 2018, 36(13): 58–64. DOI: 10.3981/j.issn.1000-7857.2018.13.008.

    YANG L Y, ZHANG L Y, DING C X, et al. Ultra high speed digital image correlation system and its application in blasting research [J]. Science & Technology Review, 2018, 36(13): 58–64. DOI: 10.3981/j.issn.1000-7857.2018.13.008.
    [19] ZHANG T Y, SUEN C Y. A Fast parallel algorithm for thinning digital patterns [J]. Communications of the ACM, 1984, 27(3): 236–239. DOI: 10.1145/357994.358023.
    [20] 齐金铎. 现代爆破理论 [M]. 北京: 冶金工业出版社, 1996: 111−118.
    [21] 黄家蓉, 王幸, 吴飚, 等. 混凝土靶内爆炸应力波测量方法研究 [J]. 中国测试, 2016, 42(10): 25–28. DOI: 10.11857/j.issn.1674-5124.2016.10.005.

    HUANG J R, WANG X, WU B, et al. Research on stress wave measurement method in concrete target in explosion [J]. China Measurement and Testing Technology, 2016, 42(10): 25–28. DOI: 10.11857/j.issn.1674-5124.2016.10.005.
    [22] 冯盼学, 陈何. 束状孔爆破应力场的超动态应变试验研究 [J]. 矿冶, 2011, 20(3): 33–35, 71. DOI: 10.3969/j.issn.1005-7854.2011.03.008.

    FENG P X, CHEN H. Super dynamic strain experimental study on bundle-holes blasting stress field [J]. Ming and Metallurgy, 2011, 20(3): 33–35, 71. DOI: 10.3969/j.issn.1005-7854.2011.03.008.
    [23] HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement & Concrete Research, 1976, 6(6): 773–781. DOI: 10.1016/0008-8846(76)90007-7.
    [24] ALAM S Y, SALIBA J, LOUKILI A. Fracture examination in concrete through combined digital image correlation and acoustic emission techniques [J]. Construction and Building Materials, 2014, 69: 232–242. DOI: 10.1016/j.conbuildmat.2014.07.044.
    [25] SKARZYNSKI L, SYROKA E, TEJCHMAN J. Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams [J]. Strain, 2009, 47(S1): 319–332. DOI: 10.1111/j.1475-1305.2008.00605.x.
    [26] WU Z M, RONG H, ZHENG J J, et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique [J]. Engineering Fracture Mechanics, 2011, 78(17): 2978–2990. DOI: 10.1016/j.engfracmech.2011.08.016.
    [27] SWADDIWUDHIPONG S, LU H R, WEE T H. Direct tension test and tensile strain capacity of concrete at early age [J]. Cement and Concrete Research, 2003, 33(12): 2077–2084. DOI: 10.1016/S0008-8846(03)00231-X.
    [28] 赵艳华. 混凝土断裂过程中的能量分析研究[D]. 大连: 大连理工大学, 2002: 55−60.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  4844
  • HTML全文浏览量:  2959
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2020-02-28
  • 网络出版日期:  2020-04-25
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回