弹体侵彻YAG透明陶瓷/玻璃的剩余深度

陈贝贝 张先锋 邓佳杰 章健 包阔 谈梦婷

陈贝贝, 张先锋, 邓佳杰, 章健, 包阔, 谈梦婷. 弹体侵彻YAG透明陶瓷/玻璃的剩余深度[J]. 爆炸与冲击, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372
引用本文: 陈贝贝, 张先锋, 邓佳杰, 章健, 包阔, 谈梦婷. 弹体侵彻YAG透明陶瓷/玻璃的剩余深度[J]. 爆炸与冲击, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372
CHEN Beibei, ZHANG Xianfeng, DENG Jiajie, ZHANG Jian, BAO Kuo, TAN Mengting. Residual penetration depth of a projectile into YAG transparent ceramic/glass[J]. Explosion And Shock Waves, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372
Citation: CHEN Beibei, ZHANG Xianfeng, DENG Jiajie, ZHANG Jian, BAO Kuo, TAN Mengting. Residual penetration depth of a projectile into YAG transparent ceramic/glass[J]. Explosion And Shock Waves, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372

弹体侵彻YAG透明陶瓷/玻璃的剩余深度

doi: 10.11883/bzycj-2019-0372
基金项目: 国家自然科学基金(11772159);中央高校基本科研业务费专项资金(30917011104);高性能陶瓷和超微结构国家重点实验室开放基金(SKL201602SIC)
详细信息
    作者简介:

    陈贝贝(1993- ),男,硕士研究生,r.chan@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O383

Residual penetration depth of a projectile into YAG transparent ceramic/glass

  • 摘要: 为了研究钇铝石榴石(yttrium aluminum garnet, YAG)透明陶瓷及玻璃材料的抗弹性能和冲击破坏机制,开展了12.7 mm穿甲燃烧弹侵彻YAG透明陶瓷/玻璃的剩余侵彻深度实验研究。基于变形侵彻和刚性侵彻机制建立理论模型分析子弹撞击YAG透明陶瓷和玻璃的作用过程,并利用空腔膨胀模型确定了剩余弹体对2024T351航空铝的剩余侵彻深度。实验结果表明:YAG透明陶瓷对子弹有较强的破碎作用,其防护能力显著高于玻璃材料。理论模型计算得到的剩余弹体质量和侵彻深度结果与实验结果吻合较好,可见本文建立的理论模型可用于评估不同面板材料的抗弹性能。
  • 图  1  剩余穿深试验用弹体和靶体以及试验原理

    Figure  1.  Projectile, target and principle of residual penetration test

    图  2  试验靶体的典型破坏形态

    Figure  2.  Damage morphologies in targets used in tests

    图  3  靶板中的侵彻弹道

    Figure  3.  Penetration trajectories in targets

    图  4  侵彻弹道对比

    Figure  4.  Comparison of penetration trajectories

    图  5  试验回收弹体

    Figure  5.  Recycled projectiles after tests

    图  6  侵彻过程示意图

    Figure  6.  Diagram of penetration

    图  7  尖卵形弹体弹形示意图

    Figure  7.  Diagram of an ogive-nosed projectile

    图  8  弹体质量损失计算模型的试验验证

    Figure  8.  Experimental verification of the calculation model for projectile mass loss

    图  9  模型预测结果与试验结果对比

    Figure  9.  Comparison of model prediction results with experimental results

    图  10  透明陶瓷厚度对剩余侵深的影响

    Figure  10.  Effect of transparent ceramic thickness on residual depth of penetration

    图  11  陶瓷厚度对弹体质量损失和剩余弹体速度的影响

    Figure  11.  Effects of ceramic thickness on mass loss and residual velocity of a projectile

    图  12  弹体强度对剩余侵彻深度的影响

    Figure  12.  Effect of projectile strength on depth of penetration

    图  13  弹体强度对侵彻过程的影响

    Figure  13.  Effects of different projectile strengths on penetration process

    图  14  不同撞击速度下剩余侵彻深度与陶瓷锥半锥角的关系

    Figure  14.  Relation of residual depth of penetration to the semi-angle of the ceramic cone under different impact velocities

    表  1  靶体尺寸及材料参数

    Table  1.   Sizes and material parametes for targets

    材料长/mm宽/mm高/mm密度/(g·cm−3)面密度/(kg·m−2)
    YAG透明陶瓷 81.4 69.7 9.24.5541.86
    硅酸盐玻璃100.0100.0 7.92.5320.24
    航空铝(2024T351)120.0120.0120.02.78
    下载: 导出CSV

    表  2  剩余侵彻深度试验结果

    Table  2.   Experimental results of residual depth of penetration

    试验弹速/(m·s−1)面板材料剩余穿深/mm防护因数
    1-1833.42024T351航空铝70.01.000
    1-2835.469.01.000
    2-1836.0YAG透明陶瓷29.01.589
    2-2838.128.81.596
    3-1835.9硅酸盐玻璃56.51.098
    3-2834.455.51.115
    下载: 导出CSV

    表  3  弹靶材料动态强度

    Table  3.   Dynamic strength of projectile and target materials

    材料动态屈服强度/MPa
    弹芯(高碳钢)1 600
    YAG透明陶瓷3 400
    硅酸盐玻璃 510[15]
    2024航空铝 400
    下载: 导出CSV

    表  4  尖卵形弹体参数

    Table  4.   Parameters of the ogive-nosed projectile

    参数数值及单位参数数值
    弹体强度Yp1.6 GPa[16]N11.09
    弹体初速v0835 m/sN20.112 7
    铝合金Y400 MPa[19]N*0.106 9
    铝合金E70 GPa[19]Ψ2.988
    玻璃强度σt5.1 GPa[18]μm0.02
    A3.64φ056.38°
    B1.15
    下载: 导出CSV
  • [1] PALIWAL B, RAMESH K T, MCCAULEY J W. Direct observation of the dynamic compressive failure of a transparent polycrystalline ceramic (AlON) [J]. Journal of the American Ceramic Society, 2006, 89(7): 2128–2133. DOI: 10.1111/j.1551-2916.2006.00965.x.
    [2] MCCAULEY J W, STRASSBURGER E, PATEL P, et al. Experimental observations on dynamic response of selected transparent armor materials [J]. Experimental Mechanics, 2013, 53(1): 3–29. DOI: 10.1007/s11340-012-9658-5.
    [3] STRASSBURGER E, HUNZINGER M, PATEL P, et al. Analysis of the fragmentation of AlON and spinel under ballistic impact [J]. Journal of Applied Mechanics, 2013, 80(3): 031807. DOI: 10.1115/1.4023573.
    [4] BLESS S. Using depth-of-penetration tests to design transparent armor [J]. Experimental Mechanics, 2013, 53(1): 47–51. DOI: 10.1007/s11340-012-9624-2.
    [5] GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems [J]. Materials and Design, 2012, 34: 808–819. DOI: 10.1016/j.matdes.2011.07.007.
    [6] JIANG W, CHENG X W, XIONG Z P, et al. Static and dynamic mechanical properties of yttrium aluminum garnet (YAG) [J]. Ceramics International, 2019, 45(9): 12256–12263. DOI: 10.1016/j.ceramint.2019.03.136.
    [7] FLORENCE A L. Interaction of projectiles and composite armor: AMMRC-CR-69-15 [R]. Menlo Park, CA: Stanford Research Institute, 1969.
    [8] GONÇALVES D P, DE MELO F C L, KLEIN A N, et al. Analysis and investigation of ballistic impact on ceramic/metal composite armour [J]. International Journal of Machine Tools and Manufacture, 2004, 44(2−3): 307–316. DOI: 10.1016/j.ijmachtools.2003.09.005.
    [9] ZAERA R, SÁNCHEZ-GÁLVEZ V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours [J]. International Journal of Impact Engineering, 1998, 21(3): 133–148. DOI: 10.1016/S0734-743X(97)00035-3.
    [10] WOODWARD R L. A simple one-dimensional approach to modelling ceramic composite armour defeat [J]. International Journal of Impact Engineering, 1990, 9(4): 455–474. DOI: 10.1016/0734-743X(90)90035-T.
    [11] FELLOWS N A, BARTON P C. Development of impact model for ceramic-faced semi-infinite armour [J]. International Journal of Impact Engineering, 1999, 22(8): 793–811. DOI: 10.1016/S0734-743X(99)00017-2.
    [12] 杜忠华. 动能弹侵彻陶瓷复合装甲机理[D]. 南京: 南京理工大学, 2002.

    DU Z H. Mechanics research on penetration of KE-projectile to ceramic composite arrmour [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2002.
    [13] ROSENBERG Z, BLESS S J, YESHURUN Y, et al. A new definition of ballistic efficiency of brittle materials based on the use of thick backing plates [J]. Impact Loading and Dynamic Behavior of Materials, 1988, 1: 491–498.
    [14] 段卓平, 朱艳丽, 张连生. 爆炸成型弹丸对Al2O3装甲陶瓷材料的侵彻实验研究 [J]. 爆炸与冲击, 2006, 26(6): 505–509. DOI: 10.11883/1001-1455(2006)06-0505-05.

    DUAN Z P, ZHU Y L, ZHANG L S. DOP experimental study on EFP penetrating Al2O3 armor ceramic [J]. Explosion and Shock Waves, 2006, 26(6): 505–509. DOI: 10.11883/1001-1455(2006)06-0505-05.
    [15] 安二峰, 李磊, 杨军. 典型玻璃材料冲击力学性能研究 [J]. 北京理工大学学报, 2010, 30(2): 127–130. DOI: 10.15918/j.tbit1001-0645.2010.02.001.

    AN E F, LI L, YANG J. A study on the impact properties of typical glassy materials [J]. Transactions of Beijing Institute of Technology, 2010, 30(2): 127–130. DOI: 10.15918/j.tbit1001-0645.2010.02.001.
    [16] HAZELL P J. Measuring the strength of brittle materials by depth-of-penetration testing [J]. Advances in Applied Ceramics, 2010, 109(8): 504–510. DOI: 10.1179/174367610X12804792635387.
    [17] 申志强, 蒋志刚, 曾首义. 陶瓷金属复合靶板工程模型及耗能分析 [J]. 工程力学, 2008, 25(9): 229–234.

    SHEN Z Q, JIANG Z G, ZENG S Y. An engineering model and energy dissipation analysis of ceramic/metal composite target [J]. Engineering Mechanics, 2008, 25(9): 229–234.
    [18] LEA F C. Hardness of metals [M]. London: Charles Griffin and Co., Ltd., 1936.
    [19] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [20] GOODIER J N. On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft sphere [C] // Proceedings of the 7th Symposium on Hypervelocity Impact. California, United States: American Institute of Aeronautics and Astronautics, 1965: 215−59.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  3543
  • HTML全文浏览量:  1711
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-11-13
  • 网络出版日期:  2020-06-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回