Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy
-
摘要: 为构建Zr62.5Nb3Cu14.5Ni14Al6非晶合金在高压、大应变、高应变率状态下的材料模型,采用根据实验数据理论推导和数值模拟对比反馈的方法,对材料的Johnson-Holmquist本构模型(JH-2模型)参数进行了研究:材料的静水压力-体应变关系通过平板冲击实验数据和理论推导得到;无损材料强度与应变、应变率的关系通过轴向压缩实验数据确定;材料损伤参数与破碎材料强度参数的关系通过平板冲击实验数据确定;破碎材料强度参数通过数值模拟与实验结果对比的反馈法得到。将材料模型应用于平板冲击和破片侵彻的数值模拟,通过数值模拟与实验结果对比的方式,验证材料模型的准确性。结果表明,平板冲击实验中,材料的自由面粒子速度曲线与数值模拟结果吻合度较高;破片侵彻实验中,破片对钢靶的侵彻深度、开坑孔径与数值模拟结果的一致性较好,构建的材料模型较准确反映了材料的动态力学特性。Abstract: Zr-based bulk metallic glass is a type of glass alloy with many excellent properties, such as high strength and high hardness. With the increasing application of Zr-based bulk metallic glass alloys in military field, it is urgent to construct the mechanical models for these materials, including equations of state and constitutive relations. The Johnson-Holmquist constitutive model (JH-2 model) is the most widely used constitutive model to describe the response of brittle materials subjected to high pressures, large strains, and high strain rates. The parameters of the JH-2 model for the Zr62.5Nb3Cu14.5Ni14Al6 bulk metallic glass alloy were determined by experimental and theoretical methods, as well as “back out” approaches from simulation data. The Hydrostatic pressure-volume strain relationship was developed by theoretical derivation from the results of plate-impact experiments. The results of axial compression tests were used to propose the relationship between the intact strength and strain, strain rate of the material. The relationship between the damage parameters and fracture strength of the material was determined by the plate-impact experiments. The plate-impact data were used to “back out” the fracture strength parameters as well. Numerical simulation results including plate impact and fragment penetration were provided to validate the accuracy and applicability of the developed model. The results show that the particle velocity curve of the freedom surface agrees well with the numerical simulation. The penetration depth and cavity radius obtained in the tests are in good agreement with the numerical simulation results, and the developed model can describe the dynamic properties of the material accurately.
-
Key words:
- Zr-based amorphous alloy /
- JH-2 model /
- constitutive relation /
- large strain
-
表 1 平板冲击实验数据[24] 及相应计算结果
Table 1. Experimental data[24] by plate impact tests and the corresponding calculation results
σx/GPa μ p/GPa p* σ/GPa σi/GPa σf/GPa D $\varepsilon_x^{\rm{total}} $ $\varepsilon_x^{\rm{elastic}} $ $\varepsilon_x^{\rm{plastic}} $ $\varepsilon_x^{\rm f} $ $\varepsilon_x^{\rm f} $ 5.97 0.043 4.84 1.27 1.69 2.94 1.00 0.65 0.041 0.034 0.007 0.011 0.007 6.76 0.046 5.56 1.46 1.81 3.07 1.04 0.62 0.044 0.034 0.010 0.016 0.011 7.57 0.054 6.22 1.64 2.03 3.18 1.07 0.55 0.051 0.034 0.017 0.031 0.021 8.88 0.059 7.42 1.95 2.19 3.37 1.12 0.52 0.055 0.034 0.022 0.041 0.027 10.05 0.060 8.54 2.25 2.26 3.53 1.16 0.54 0.057 0.034 0.023 0.042 0.028 表 2 Zr62.5Nb3Cu14.5Ni14Al6非晶合金轴向压缩实验数据[24]
Table 2. Experimental data of axial compression for Zr62.5Nb3Cu14.5Ni14Al6 amorphous alloy[24]
编号 设备 σ/GPa p/GPa σ* p* $\dot \varepsilon $/s-1 1# Instron 5982 1.26 0.43 0.48 0.11 0.000 4 2# Instron 5982 1.30 0.43 0.48 0.11 0.001 3# Instron 5982 1.34 0.45 0.20 0.12 0.002 4# Instron 5982 1.26 0.42 0.47 0.11 0.003 5# Instron 5982 1.28 0.43 0.47 0.11 0.004 6# Instron 5982 1.37 0.46 0.51 0.12 0.010 7# SHPB 1.45 0.48 0.54 0.13 1 755 8# SHPB 1.46 0.49 0.54 0.13 1 964 9# SHPB 1.51 0.50 0.56 0.13 2 783 10# SHPB 1.75 0.58 0.65 0.15 3 129 11# SHPB 1.64 0.55 0.61 0.14 3 410 12# SHPB 1.87 0.62 0.70 0.16 6 378 表 3 计算参数及误差
Table 3. Parameters and errors
编号 B M D1/10−3 D2 误差/% 编号 B M D1/10-3 D2 误差/% 1# 0.1 0.5 4.8 2.704 4.2 9# 0.3 0.1 3.6 2.838 3.9 2# 0.2 0.5 4.2 2.663 4.1 10# 0.3 0.2 3.6 2.793 3.8 3# 0.3 0.5 3.6 2.606 3.9 11# 0.3 0.3 3.6 2.741 3.8 4# 0.4 0.5 3.0 2.520 4.2 12# 0.3 0.4 3.6 2.679 3.9 5# 0.5 0.5 2.4 2.372 4.2 13# 0.3 0.5 3.6 2.606 3.9 6# 0.6 0.5 1.9 2.060 4.9 14# 0.3 0.6 3.7 2.521 4.0 7# 0.7 0.5 1.5 0.929 12.3 15# 0.3 0.7 3.7 2.418 4.4 8# 0.8 0.5 0.003 5 5.281 139.6 16# 0.3 0.8 3.8 2.295 4.8 表 4 Zr62.5Nb3Cu14.5Ni14Al6非晶合金材料常数
Table 4. Parameters of the JH-2 model for Zr62.5Nb3Cu14.5Ni14Al6 amorphous alloy
ρ0/(kg·cm−3) ν HEL/GPa K1/GPa K2/GPa K3/GPa β D1 D2 6.76 0.37 5.54 110.9 −871.7 20 930 1.0 0.003 5 2.83 pHEL/GPa σHEL/GPa T/GPa A B C M N $\sigma _{{\rm{fmax}}}^{\rm{*}}$ 3.8 2.7 0.57 0.83 0.3 0.033 0.25 0.34 1.0 表 5 数值模拟中铜材料参数
Table 5. The parameters of copper in the simulations
ρ0/(kg·cm−3) G/GPa σy/MPa 冲击状态方程参数 Γ0 c1/(m·s−1) S1 8.93 47.7 120 2.02 3940 1.489 Steinberg-Guinan强度模型参数 σmax/MPa β n dG/dP (dG/dT)/(kPa·K−1) dY/dG 640 36 0.45 1.35 −17 980 0.003 396 表 6 数值模拟中45钢的材料参数
Table 6. The parameters of 45 steel in the simulations
ρ0/(kg·cm−3) 强度模型参数 A/MPa B/MPa C N M 7.85 780 730 0.0083 0.307 0.804 K/GPa 损伤模型参数 D1 D2 D3 D4 D5 157.9 0.05 3.44 −2.12 0.002 0.61 -
[1] WEI H Y, YOO C S. Kinetics of small single particle combustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 023506. DOI: 10.1063/1.3677789. [2] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302. [3] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1. [4] RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003. [5] 郑娜娜, 董素荣, 郭强, 等. 高塑性W-Cu-Zr非晶合金药型罩材料 [J]. 兵器材料科学与工程, 2014, 37(1): 94–96. DOI: 10.3969/j.issn.1004-244X.2014.01.034.ZHENG N N, DONG S R, GUO Q, et al. High plasticity liner material of W-Cu-Zr amorphous alloy [J]. Ordnance Material Science and Engineering, 2014, 37(1): 94–96. DOI: 10.3969/j.issn.1004-244X.2014.01.034. [6] WALTER W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material: ARL-TR-3864 [R]. Adelphi, MD, USA: Army Research Laboratory, 2006: 1−36. [7] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004. [8] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107. [9] KIM G S, SON C Y, LEE S B, et al. Ballistic impact properties of Zr-based amorphous alloy composites reinforced with woven continuous fibers [J]. Metallurgical and Materials Transactions A, 2012, 43(3): 870–881. DOI: 10.1007/s11661-011-0915-5. [10] ROSENBERG Z, DEKEL E. Terminal ballistics [M]. Berlin: Spring, 2012: 1−36. [11] HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of silicon carbide for high-velocity impact [J]. Journal of Applied Physics, 2005, 97(9): 093502. DOI: 10.1063/1.1881798. [12] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199. [13] JOHNSON G R, HOLMQUIST T J, CHOCRON S, et al. Response of a polystyrene foam subjected to large strains and high pressures [J]. European Physical Journal: Special Topics, 2018, 227(1): 61–71. DOI: 10.1140/epjst/e2018-00072-8. [14] JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643. [15] HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of boron carbide for plate-impact conditions [J]. Journal of Applied Physics, 2006, 100(9): 093525. DOI: 10.1063/1.2362979. [16] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. DOI: 10.1016/S0734-743X(00)00046-4. [17] HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903. [18] MA G C, ZHU Z W, WANG Z, et al. Deformation behavior of the Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass over a wide range of strain rate and temperatures [J]. Journal of Materials Science and Technology, 2015, 31(9): 941–945. DOI: 10.1016/j.jmst.2015.06.001. [19] WANG G Y, LIAW P K, MORRISON M L. Progress in studying the fatigue behavior of Zr-based bulk-metallic glasses and their composites [J]. Intermetallics, 2009, 17(8): 579–590. DOI: 10.1016/j.intermet.2009.01.017. [20] WANG J X, YIN Y, LUO C W. Johnson-Holmquist-II (JH-2) constitutive model for rock materials: parameter determination and application in tunnel smooth blasting [J]. Applied Sciences, 2018, 8(9): 1675. DOI: 10.3390/app8091675. [21] SIMONS E C, WEERHEIJM J, SLUYS L J. Simulating brittle and ductile response of alumina ceramics under dynamic loading [J]. Engineering Fracture Mechanics, 2019, 216: 106481. DOI: 10.1016/j.engfracmech.2019.05.013. [22] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114. [23] 王枫, 胡丰, 黄鹏, 等. 球状飞射物对屋面瓦片冲击效应的数值模拟 [J]. 同济大学学报(自然科学版), 2018, 46(10): 1334–1340. DOI: 10.11908/j.issn.0253-374x.2018.10.003.WANG F, HU F, HUANG P, et al. Numerical simulation of impact effect of windborne spherical debris on roof tiles [J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1334–1340. DOI: 10.11908/j.issn.0253-374x.2018.10.003. [24] 石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2018. [25] TOGO H, ZHANG Y, KAWAMURA Y, et al. Properties of Zr-based bulk metallic glass under shock compression [J]. Materials Science and Engineering: A, 2007, 449−451: 264–268. DOI: 10.1016/j.msea.2006.02.431. [26] MARTIN M, SEKINE T, KOBAYASHI T, et al. High-pressure equation of the state of a zirconium-based bulk metallic glass [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2689–2696. DOI: 10.1007/s11661-007-9263-x. [27] WANG W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Progress in Materials Science, 2012, 57(3): 487–656. DOI: 10.1016/j.pmatsci.2011.07.001. [28] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [29] 俞宇颖, 谭华, 戴诚达, 等. 高压屈服强度测量方法比较研究 [J]. 高压物理学报, 2013, 27(6): 821–827. DOI: 10.11858/gywlxb.2013.06.005.YU Y Y, TAN H, DAI C D, et al. Comparison of methods for high-pressure dynamic yield strength measurement [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 821–827. DOI: 10.11858/gywlxb.2013.06.005. [30] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799. [31] 张云峰, 罗兴柏, 孙华刚, 等. Zr41Ti14Ni12.5Cu10Be22.5非晶合金冲击压缩行为理论与实验研究 [J]. 哈尔滨工业大学学报, 2019, 51(5): 94–99. DOI: 10.11918/j.issn.0367-6234.201804141.ZHANG Y F, LUO X B, SUN H G, et al. Theoretical and experimental research of shock compressive behavior of Zr41Ti14Ni12.5Cu10Be22.5 amorphous alloy [J]. Journal of Harbin Institute of Technology, 2019, 51(5): 94–99. DOI: 10.11918/j.issn.0367-6234.201804141. [32] HOLMQUIST T J, JOHNSON G R, GRADY D E, et al. High strain rate properties and constitutive modeling of glass [C] // Proceedings of the 15th International Symposium on Ballistics. Washington, USA: Sandia National Labs, 1995: 11-14.