Zr基非晶合金JH-2模型的构建及应用

张云峰 罗兴柏 刘国庆 施冬梅

张云峰, 罗兴柏, 刘国庆, 施冬梅. Zr基非晶合金JH-2模型的构建及应用[J]. 爆炸与冲击, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377
引用本文: 张云峰, 罗兴柏, 刘国庆, 施冬梅. Zr基非晶合金JH-2模型的构建及应用[J]. 爆炸与冲击, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377
ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei. Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy[J]. Explosion And Shock Waves, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377
Citation: ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei. Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy[J]. Explosion And Shock Waves, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377

Zr基非晶合金JH-2模型的构建及应用

doi: 10.11883/bzycj-2019-0377
详细信息
    作者简介:

    张云峰(1990- ),男,博士研究生,1193954881@qq.com

    通讯作者:

    刘国庆(1975- ),男,博士,副教授,13081106809@163.com

  • 中图分类号: O346.5;TG139.8

Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy

  • 摘要: 为构建Zr62.5Nb3Cu14.5Ni14Al6非晶合金在高压、大应变、高应变率状态下的材料模型,采用根据实验数据理论推导和数值模拟对比反馈的方法,对材料的Johnson-Holmquist本构模型(JH-2模型)参数进行了研究:材料的静水压力-体应变关系通过平板冲击实验数据和理论推导得到;无损材料强度与应变、应变率的关系通过轴向压缩实验数据确定;材料损伤参数与破碎材料强度参数的关系通过平板冲击实验数据确定;破碎材料强度参数通过数值模拟与实验结果对比的反馈法得到。将材料模型应用于平板冲击和破片侵彻的数值模拟,通过数值模拟与实验结果对比的方式,验证材料模型的准确性。结果表明,平板冲击实验中,材料的自由面粒子速度曲线与数值模拟结果吻合度较高;破片侵彻实验中,破片对钢靶的侵彻深度、开坑孔径与数值模拟结果的一致性较好,构建的材料模型较准确反映了材料的动态力学特性。
  • 图  1  JH-2模型[12]

    Figure  1.  Description of the JH-2 model[12]

    图  2  材料的压力-体应变关系

    Figure  2.  Relation between pressure and volumetric strain for the material

    图  3  确定的材料归一化静水压力-等效破碎应变关系

    Figure  3.  Determined relation between normalized hydrostatic pressure and equivalent crushing strain for the material

    图  4  材料的应变率敏感性

    Figure  4.  Strain rate sensitivity of the material

    图  5  构建的无损材料强度模型和破碎材料强度模型

    Figure  5.  The intact strength and fractured strength models developed for the material

    图  6  不同冲击速度下,试样自由面速度的数值模拟结果与平板冲击实验结果的对比

    Figure  6.  Comparison of simulated impact-induced free-surface velocities in samples with those measured in flyer-plate impact tests at different impact velocities

    图  7  侵彻实验装置的布局

    Figure  7.  Layout of devices for penetration tests

    图  8  靶板横截面的数值模拟结果与侵彻实验结果的对比

    Figure  8.  Comparison of cross sections of targets between numerical simulation and penetration test results

    图  9  不同冲击速度下的侵彻深度和弹坑直径

    Figure  9.  Penetration depths and crater diameters at different impact velocities

    表  1  平板冲击实验数据[24] 及相应计算结果

    Table  1.   Experimental data[24] by plate impact tests and the corresponding calculation results

    σx/GPaμp/GPap*σ/GPaσi/GPaσf/GPaD$\varepsilon_x^{\rm{total}} $$\varepsilon_x^{\rm{elastic}} $$\varepsilon_x^{\rm{plastic}} $$\varepsilon_x^{\rm f} $$\varepsilon_x^{\rm f} $
    5.970.0434.841.271.692.941.000.650.0410.0340.0070.0110.007
    6.760.0465.561.461.813.071.040.620.0440.0340.0100.0160.011
    7.570.0546.221.642.033.181.070.550.0510.0340.0170.0310.021
    8.880.0597.421.952.193.371.120.520.0550.0340.0220.0410.027
    10.050.0608.542.252.263.531.160.540.0570.0340.0230.0420.028
    下载: 导出CSV

    表  2  Zr62.5Nb3Cu14.5Ni14Al6非晶合金轴向压缩实验数据[24]

    Table  2.   Experimental data of axial compression for Zr62.5Nb3Cu14.5Ni14Al6 amorphous alloy[24]

    编号设备σ/GPap/GPaσ*p*$\dot \varepsilon $/s-1
    1#Instron 59821.260.430.480.110.000 4
    2#Instron 59821.300.430.480.110.001
    3#Instron 59821.340.450.200.120.002
    4#Instron 59821.260.420.470.110.003
    5#Instron 59821.280.430.470.110.004
    6#Instron 59821.370.460.510.120.010
    7#SHPB1.450.480.540.131 755
    8#SHPB1.460.490.540.131 964
    9#SHPB1.510.500.560.132 783
    10#SHPB1.750.580.650.153 129
    11#SHPB1.640.550.610.143 410
    12#SHPB1.870.620.700.166 378
    下载: 导出CSV

    表  3  计算参数及误差

    Table  3.   Parameters and errors

    编号BMD1/10−3D2误差/%编号BMD1/10-3D2误差/%
    1#0.10.54.82.7044.29#0.30.13.62.8383.9
    2#0.20.54.22.6634.110#0.30.23.62.7933.8
    3#0.30.53.62.6063.911#0.30.33.62.7413.8
    4#0.40.53.02.5204.212#0.30.43.62.6793.9
    5#0.50.52.42.3724.213#0.30.53.62.6063.9
    6#0.60.51.92.0604.914#0.30.63.72.5214.0
    7#0.70.51.50.92912.315#0.30.73.72.4184.4
    8#0.80.50.003 55.281139.616#0.30.83.82.2954.8
    下载: 导出CSV

    表  4  Zr62.5Nb3Cu14.5Ni14Al6非晶合金材料常数

    Table  4.   Parameters of the JH-2 model for Zr62.5Nb3Cu14.5Ni14Al6 amorphous alloy

    ρ0/(kg·cm−3)νHEL/GPaK1/GPaK2/GPaK3/GPaβD1D2
    6.760.375.54110.9−871.720 9301.00.003 52.83
    pHEL/GPaσHEL/GPaT/GPaABCMN$\sigma _{{\rm{fmax}}}^{\rm{*}}$
    3.82.70.570.830.30.0330.250.341.0
    下载: 导出CSV

    表  5  数值模拟中铜材料参数

    Table  5.   The parameters of copper in the simulations

    ρ0/(kg·cm−3)G/GPaσy/MPa冲击状态方程参数
    Γ0c1/(m·s−1)S1
    8.9347.71202.0239401.489
    Steinberg-Guinan强度模型参数
    σmax/MPaβndG/dP(dG/dT)/(kPa·K−1)dY/dG
    640360.451.35−17 9800.003 396
    下载: 导出CSV

    表  6  数值模拟中45钢的材料参数

    Table  6.   The parameters of 45 steel in the simulations

    ρ0/(kg·cm−3)强度模型参数
    A/MPaB/MPaCNM
    7.857807300.00830.3070.804
    K/GPa损伤模型参数
    D1D2D3D4D5
    157.90.053.44−2.120.0020.61
    下载: 导出CSV
  • [1] WEI H Y, YOO C S. Kinetics of small single particle combustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 023506. DOI: 10.1063/1.3677789.
    [2] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
    [3] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1.
    [4] RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003.
    [5] 郑娜娜, 董素荣, 郭强, 等. 高塑性W-Cu-Zr非晶合金药型罩材料 [J]. 兵器材料科学与工程, 2014, 37(1): 94–96. DOI: 10.3969/j.issn.1004-244X.2014.01.034.

    ZHENG N N, DONG S R, GUO Q, et al. High plasticity liner material of W-Cu-Zr amorphous alloy [J]. Ordnance Material Science and Engineering, 2014, 37(1): 94–96. DOI: 10.3969/j.issn.1004-244X.2014.01.034.
    [6] WALTER W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material: ARL-TR-3864 [R]. Adelphi, MD, USA: Army Research Laboratory, 2006: 1−36.
    [7] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
    [8] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [9] KIM G S, SON C Y, LEE S B, et al. Ballistic impact properties of Zr-based amorphous alloy composites reinforced with woven continuous fibers [J]. Metallurgical and Materials Transactions A, 2012, 43(3): 870–881. DOI: 10.1007/s11661-011-0915-5.
    [10] ROSENBERG Z, DEKEL E. Terminal ballistics [M]. Berlin: Spring, 2012: 1−36.
    [11] HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of silicon carbide for high-velocity impact [J]. Journal of Applied Physics, 2005, 97(9): 093502. DOI: 10.1063/1.1881798.
    [12] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [13] JOHNSON G R, HOLMQUIST T J, CHOCRON S, et al. Response of a polystyrene foam subjected to large strains and high pressures [J]. European Physical Journal: Special Topics, 2018, 227(1): 61–71. DOI: 10.1140/epjst/e2018-00072-8.
    [14] JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
    [15] HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of boron carbide for plate-impact conditions [J]. Journal of Applied Physics, 2006, 100(9): 093525. DOI: 10.1063/1.2362979.
    [16] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. DOI: 10.1016/S0734-743X(00)00046-4.
    [17] HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903.
    [18] MA G C, ZHU Z W, WANG Z, et al. Deformation behavior of the Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass over a wide range of strain rate and temperatures [J]. Journal of Materials Science and Technology, 2015, 31(9): 941–945. DOI: 10.1016/j.jmst.2015.06.001.
    [19] WANG G Y, LIAW P K, MORRISON M L. Progress in studying the fatigue behavior of Zr-based bulk-metallic glasses and their composites [J]. Intermetallics, 2009, 17(8): 579–590. DOI: 10.1016/j.intermet.2009.01.017.
    [20] WANG J X, YIN Y, LUO C W. Johnson-Holmquist-II (JH-2) constitutive model for rock materials: parameter determination and application in tunnel smooth blasting [J]. Applied Sciences, 2018, 8(9): 1675. DOI: 10.3390/app8091675.
    [21] SIMONS E C, WEERHEIJM J, SLUYS L J. Simulating brittle and ductile response of alumina ceramics under dynamic loading [J]. Engineering Fracture Mechanics, 2019, 216: 106481. DOI: 10.1016/j.engfracmech.2019.05.013.
    [22] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.

    ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
    [23] 王枫, 胡丰, 黄鹏, 等. 球状飞射物对屋面瓦片冲击效应的数值模拟 [J]. 同济大学学报(自然科学版), 2018, 46(10): 1334–1340. DOI: 10.11908/j.issn.0253-374x.2018.10.003.

    WANG F, HU F, HUANG P, et al. Numerical simulation of impact effect of windborne spherical debris on roof tiles [J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1334–1340. DOI: 10.11908/j.issn.0253-374x.2018.10.003.
    [24] 石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2018.
    [25] TOGO H, ZHANG Y, KAWAMURA Y, et al. Properties of Zr-based bulk metallic glass under shock compression [J]. Materials Science and Engineering: A, 2007, 449−451: 264–268. DOI: 10.1016/j.msea.2006.02.431.
    [26] MARTIN M, SEKINE T, KOBAYASHI T, et al. High-pressure equation of the state of a zirconium-based bulk metallic glass [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2689–2696. DOI: 10.1007/s11661-007-9263-x.
    [27] WANG W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Progress in Materials Science, 2012, 57(3): 487–656. DOI: 10.1016/j.pmatsci.2011.07.001.
    [28] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [29] 俞宇颖, 谭华, 戴诚达, 等. 高压屈服强度测量方法比较研究 [J]. 高压物理学报, 2013, 27(6): 821–827. DOI: 10.11858/gywlxb.2013.06.005.

    YU Y Y, TAN H, DAI C D, et al. Comparison of methods for high-pressure dynamic yield strength measurement [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 821–827. DOI: 10.11858/gywlxb.2013.06.005.
    [30] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [31] 张云峰, 罗兴柏, 孙华刚, 等. Zr41Ti14Ni12.5Cu10Be22.5非晶合金冲击压缩行为理论与实验研究 [J]. 哈尔滨工业大学学报, 2019, 51(5): 94–99. DOI: 10.11918/j.issn.0367-6234.201804141.

    ZHANG Y F, LUO X B, SUN H G, et al. Theoretical and experimental research of shock compressive behavior of Zr41Ti14Ni12.5Cu10Be22.5 amorphous alloy [J]. Journal of Harbin Institute of Technology, 2019, 51(5): 94–99. DOI: 10.11918/j.issn.0367-6234.201804141.
    [32] HOLMQUIST T J, JOHNSON G R, GRADY D E, et al. High strain rate properties and constitutive modeling of glass [C] // Proceedings of the 15th International Symposium on Ballistics. Washington, USA: Sandia National Labs, 1995: 11-14.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  4994
  • HTML全文浏览量:  2018
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 修回日期:  2020-06-04
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回