Damage effects of a caisson wharf subjected to underwater contact explosion
-
摘要: 为研究水下接触爆炸下沉箱码头毁伤效应和毁伤机理,通过LS-DYNA有限元软件建立沉箱码头水下接触爆炸模型,进行数值模拟研究,并通过试验验证模型准确性。结果表明:运用有限元方法能够较好地模拟水下接触爆炸作用下沉箱码头的毁伤效应,沉箱码头的破坏过程可分为两个阶段:冲击波阶段,沉箱外墙产生初始破口和环状裂缝;气泡膨胀阶段,爆轰产物从破口涌入仓格加速了仓格的变形和毁伤,仓格顶部变形严重导致码头面板破坏,气泡由于冲出水面提前溃灭,码头毁伤在0.14倍的气泡第一次脉动周期基本停止。对比不同爆炸深度,水域中部接触爆炸下沉箱毁伤最为严重,近水面接触爆炸对码头面板的毁伤作用更强。Abstract: In order to study the damage mechanism of a caisson wharf under underwater contact explosion, the damage characteristic caisson wharf subjected to underwater contact explosion was simulated by using the LS-DYNA software. The credibility of simulation results was verified by comparative analysis of experimental results. The results show that numerical simulation can reflect the experimental result effectively. The failure process of caisson wharf can be divided into two stages. The circumferential cracks and crater appear in the blast side during the shock wave propagation. During the bubble expansion stage, the detonation products flow into the caisson bin from break accelerating the deformation and damage of the caisson cage. The deformation of the cage seriously led to the damage of the wharf panel. The bubble rush out of water and collapse. Accordingly, the severest damage is stopped when it is about 14% of the first pulsation period of underwater explosion bubble. When the location of charge detonation is in the middle of water depth, underwater contact explosion causes more overall damage to the caisson. When the location of charge detonation is near water face, it causes more damage to wharf panel.
-
Key words:
- underwater contact explosion /
- caisson wharf /
- damage effect /
- pulsation bubble /
- explosive depth
-
表 1 主要部位混凝土厚度及配筋情况
Table 1. Concrete thickness and matching bar conditions of main parts
位置 混凝土厚度/cm 配筋情况 保护层厚度/cm 仓格外墙 12 双层双向配筋,钢筋直径1.2 cm,间距18 cm 2.0 仓格内隔墙 8 双层双向配筋,钢筋直径0.8 cm,间距9 cm 1.5 沉箱底板 25 双层双向配筋,钢筋直径2.0 cm,间距18 cm 4.0 管沟底板 13 双层双向配筋,钢筋直径0.6 cm,间距15 cm 2.0 管沟外壁 12 双层双向配筋,钢筋直径0.6 cm,间距15 cm 1.5 面板 6 管沟上部面板单层双向配筋,其他部位不配筋 1.5 封仓板 6 不配筋 表 2 材料参数
Table 2. Material parameters
空气 ρ/(kg·m−3) C0−C3 C4 C5 C6 E/(J·kg−1) 1.29 0 0.4 0.4 0 250000 水 ρ/(kg·m−3) C S1 S2 S3 γ 1000 1480 2.56 −1.986 0.2268 0.5 炸药 ρ/(kg·m−3) A B ω R1 R2 1630 3.74×1011 7.33×109 0.3 4.15 0.95 黏土 ρ/(kg·m−3) E/MPa G/MPa 1800 16 8 表 3 码头结构各部分吸收能量
Table 3. Energy absorption of different parts
工况 爆轰能量/kJ 迎爆仓格外墙吸能/kJ 沉箱其余仓格吸能/kJ 码头面板吸能/kJ 钢筋吸能/kJ 水域中部爆炸 2560 89.68(3.5%) 27.77(1.09%) 0.47(0.2%) 124.85(4.88%) 近水面爆炸 2560 65.45(2.56%) 18.18(0.71%) 0.62(0.2%) 80.08(3.13%) 近水底爆炸 2560 68.63(2.68%) 28.29(1.11%) 0.30(0.1%) 95.38(3.73%) 注:括号内为吸收能量占总能量的百分比。 -
[1] RAJENDRAN R. Numerical simulation of response of plane plates subjected to uniform primary shock loading of non-contact underwater explosion [J]. Materials & Design, 2009, 30(4): 1000–1007. DOI: 10.1016/j.matdes.2008.06.054. [2] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性仿真研究 [J]. 兵工学报, 2017, 38(1): 146–153. DOI: CNKI:SUN:BIGO.0.2017-01-019.WU L J, HOU H L, ZHU X, et al. Numerical simulation on inside load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion [J]. Acta Armamentarii, 2017, 38(1): 146–153. DOI: CNKI:SUN:BIGO.0.2017-01-019. [3] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse [J]. Marine Structures, 2014, 39: 90–117. DOI: 10.1016/j.marstruc.2014.07.003. [4] WARDLAW A B, LUTON J A. Fluid-structure interaction mechanisms for close-in explosions [J]. Shock & Vibration, 2015, 7(5): 265–275. DOI: 10.1155/2000/141934. [5] 周章涛, 刘建湖, 裴红波, 等. 水下近距和接触爆炸流固耦合作用机理及加载效应研究 [J]. 兵工学报, 2017, 38(S1): 141–150. DOI: CNKI:SUN:BIGO.0.2017-S1-019.ZHOU Z T, LIU J H, PEI H B, et al. Fluid-structure interaction mechanism and loading effect in close-in and contact underwater explosions [J]. Acta Armamentrii, 2017, 38(S1): 141–150. DOI: CNKI:SUN:BIGO.0.2017-S1-019. [6] 徐强, 曹阳, 陈健云. 接触爆炸荷载作用下溢流坝的抗爆性能 [J]. 爆炸与冲击, 2017, 37(4): 677–684. DOI: 10.11883/1001-1455(2017)04-0677-08.XU Q, CAO Y, CHEN J Y. Antiknock performance of an overflow dam subjected to contact explosion [J]. Explosion and Shock Waves, 2017, 37(4): 677–684. DOI: 10.11883/1001-1455(2017)04-0677-08. [7] 孙金山, 姚颖康, 吴亮, 等. 高架桥混凝土多室箱梁水压爆破破碎机理数值模拟 [J]. 爆炸与冲击, 2017, 37(2): 299–306. DOI: 10.11883/1001-1455(2017)02-0299-08.SUN J S, YAO Y K, WU L, et al. Numerical simulation of water-pressure blasting mechanism in breaking viaduct box girder [J]. Explosion and Shock Waves, 2017, 37(2): 299–306. DOI: 10.11883/1001-1455(2017)02-0299-08. [8] 张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式 [J]. 爆炸与冲击, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.ZHANG S R, WANG G H, WANG C, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07. [9] 王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908. [10] 刘美山, 吴新霞, 张恒伟, 等. 混凝土水下爆破炸药单耗试验分析 [J]. 爆破, 2007, 24(1): 10–13. DOI: 10.3963/j.issn.1001-487X.2007.01.003.LIU M S, WU X X, ZHANG H W, et al. Experimental analysis on specific charge of underwater explosion of concrete [J]. Blasting, 2007, 24(1): 10–13. DOI: 10.3963/j.issn.1001-487X.2007.01.003. [11] 董琪, 韦灼彬, 唐廷, 李凌锋, 刘靖晗. 水下爆炸对沉箱重力式码头毁伤效应 [J]. 爆炸与冲击, 2019, 39(6): 065101. DOI: 10.11883/bzycj-2018-0090.DONG Q, WEI Z B, TANG T, et al. Damage effects of caisson gravity wharf under underwater explosion [J]. Explosion and Shock Waves, 2019, 39(6): 065101. DOI: 10.11883/bzycj-2018-0090. [12] TU Z, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010. [13] MALVAR L J, ROSS C A. A review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735–739. DOI: 10.14359/418. [14] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016. [15] COLE R H, WELLER R. Underwater explosions [M]. Princeton: Princeton University Press, 1948.