水下接触爆炸下沉箱码头毁伤效应

刘靖晗 唐廷 韦灼彬 董琪 李凌锋

刘靖晗, 唐廷, 韦灼彬, 董琪, 李凌锋. 水下接触爆炸下沉箱码头毁伤效应[J]. 爆炸与冲击, 2020, 40(11): 111407. doi: 10.11883/bzycj-2019-0378
引用本文: 刘靖晗, 唐廷, 韦灼彬, 董琪, 李凌锋. 水下接触爆炸下沉箱码头毁伤效应[J]. 爆炸与冲击, 2020, 40(11): 111407. doi: 10.11883/bzycj-2019-0378
LIU Jinghan, TANG Ting, WEI Zhuobin, DONG Qi, LI Lingfeng. Damage effects of a caisson wharf subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111407. doi: 10.11883/bzycj-2019-0378
Citation: LIU Jinghan, TANG Ting, WEI Zhuobin, DONG Qi, LI Lingfeng. Damage effects of a caisson wharf subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111407. doi: 10.11883/bzycj-2019-0378

水下接触爆炸下沉箱码头毁伤效应

doi: 10.11883/bzycj-2019-0378
基金项目: 军队后勤科研计划(CHJ13J006);海军工程大学科研资助立项项目(425517K210)
详细信息
    作者简介:

    刘靖晗(1992- ),男,博士研究生,1226001717@qq.com

    通讯作者:

    唐 廷(1980- ),男,博士,讲师,kublai@126.com

  • 中图分类号: O381

Damage effects of a caisson wharf subjected to underwater contact explosion

  • 摘要: 为研究水下接触爆炸下沉箱码头毁伤效应和毁伤机理,通过LS-DYNA有限元软件建立沉箱码头水下接触爆炸模型,进行数值模拟研究,并通过试验验证模型准确性。结果表明:运用有限元方法能够较好地模拟水下接触爆炸作用下沉箱码头的毁伤效应,沉箱码头的破坏过程可分为两个阶段:冲击波阶段,沉箱外墙产生初始破口和环状裂缝;气泡膨胀阶段,爆轰产物从破口涌入仓格加速了仓格的变形和毁伤,仓格顶部变形严重导致码头面板破坏,气泡由于冲出水面提前溃灭,码头毁伤在0.14倍的气泡第一次脉动周期基本停止。对比不同爆炸深度,水域中部接触爆炸下沉箱毁伤最为严重,近水面接触爆炸对码头面板的毁伤作用更强。
  • 图  1  码头试验示意图

    Figure  1.  Schematic diagram of wharf experiment

    图  2  有限元模型

    Figure  2.  Finite element model

    图  3  冲击波传播阶段压力云图

    Figure  3.  Pressure contour of shock wave

    图  4  外墙损伤图

    Figure  4.  Damage diagram of wall

    图  5  有效应力时程曲线

    Figure  5.  History of effective stress

    图  6  速度时程曲线

    Figure  6.  History of velocity

    图  7  损伤变量时程曲线

    Figure  7.  History of scaled damage factor

    图  8  气泡与码头外墙的相互作用过程

    Figure  8.  Interaction between bubble and wall of caisson wharf

    图  9  毁伤现象对比

    Figure  9.  Comparison of the damage phenomena between simulated and experimental results

    图  10  近水底、近水面接触爆炸下码头毁伤现象

    Figure  10.  The damage phenonmena of wharf under contact explosion near water surface and bottom

    表  1  主要部位混凝土厚度及配筋情况

    Table  1.   Concrete thickness and matching bar conditions of main parts

    位置混凝土厚度/cm配筋情况保护层厚度/cm
    仓格外墙12双层双向配筋,钢筋直径1.2 cm,间距18 cm2.0
    仓格内隔墙 8双层双向配筋,钢筋直径0.8 cm,间距9 cm1.5
    沉箱底板25双层双向配筋,钢筋直径2.0 cm,间距18 cm4.0
    管沟底板13双层双向配筋,钢筋直径0.6 cm,间距15 cm2.0
    管沟外壁12双层双向配筋,钢筋直径0.6 cm,间距15 cm1.5
    面板 6管沟上部面板单层双向配筋,其他部位不配筋1.5
    封仓板 6不配筋
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    空气ρ/(kg·m−3)C0−C3C4C5C6E/(J·kg−1)
    1.2900.40.40250000
    ρ/(kg·m−3)CS1S2S3γ
    100014802.56−1.9860.22680.5
    炸药ρ/(kg·m−3)ABωR1R2
    16303.74×10117.33×1090.34.150.95
    黏土ρ/(kg·m−3)E/MPaG/MPa
    1800168
    下载: 导出CSV

    表  3  码头结构各部分吸收能量

    Table  3.   Energy absorption of different parts

    工况爆轰能量/kJ迎爆仓格外墙吸能/kJ沉箱其余仓格吸能/kJ码头面板吸能/kJ钢筋吸能/kJ
    水域中部爆炸256089.68(3.5%)27.77(1.09%)0.47(0.2%)124.85(4.88%)
    近水面爆炸256065.45(2.56%)18.18(0.71%)0.62(0.2%) 80.08(3.13%)
    近水底爆炸256068.63(2.68%)28.29(1.11%)0.30(0.1%) 95.38(3.73%)
     注:括号内为吸收能量占总能量的百分比。
    下载: 导出CSV
  • [1] RAJENDRAN R. Numerical simulation of response of plane plates subjected to uniform primary shock loading of non-contact underwater explosion [J]. Materials & Design, 2009, 30(4): 1000–1007. DOI: 10.1016/j.matdes.2008.06.054.
    [2] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性仿真研究 [J]. 兵工学报, 2017, 38(1): 146–153. DOI: CNKI:SUN:BIGO.0.2017-01-019.

    WU L J, HOU H L, ZHU X, et al. Numerical simulation on inside load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion [J]. Acta Armamentarii, 2017, 38(1): 146–153. DOI: CNKI:SUN:BIGO.0.2017-01-019.
    [3] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse [J]. Marine Structures, 2014, 39: 90–117. DOI: 10.1016/j.marstruc.2014.07.003.
    [4] WARDLAW A B, LUTON J A. Fluid-structure interaction mechanisms for close-in explosions [J]. Shock & Vibration, 2015, 7(5): 265–275. DOI: 10.1155/2000/141934.
    [5] 周章涛, 刘建湖, 裴红波, 等. 水下近距和接触爆炸流固耦合作用机理及加载效应研究 [J]. 兵工学报, 2017, 38(S1): 141–150. DOI: CNKI:SUN:BIGO.0.2017-S1-019.

    ZHOU Z T, LIU J H, PEI H B, et al. Fluid-structure interaction mechanism and loading effect in close-in and contact underwater explosions [J]. Acta Armamentrii, 2017, 38(S1): 141–150. DOI: CNKI:SUN:BIGO.0.2017-S1-019.
    [6] 徐强, 曹阳, 陈健云. 接触爆炸荷载作用下溢流坝的抗爆性能 [J]. 爆炸与冲击, 2017, 37(4): 677–684. DOI: 10.11883/1001-1455(2017)04-0677-08.

    XU Q, CAO Y, CHEN J Y. Antiknock performance of an overflow dam subjected to contact explosion [J]. Explosion and Shock Waves, 2017, 37(4): 677–684. DOI: 10.11883/1001-1455(2017)04-0677-08.
    [7] 孙金山, 姚颖康, 吴亮, 等. 高架桥混凝土多室箱梁水压爆破破碎机理数值模拟 [J]. 爆炸与冲击, 2017, 37(2): 299–306. DOI: 10.11883/1001-1455(2017)02-0299-08.

    SUN J S, YAO Y K, WU L, et al. Numerical simulation of water-pressure blasting mechanism in breaking viaduct box girder [J]. Explosion and Shock Waves, 2017, 37(2): 299–306. DOI: 10.11883/1001-1455(2017)02-0299-08.
    [8] 张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式 [J]. 爆炸与冲击, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.

    ZHANG S R, WANG G H, WANG C, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.
    [9] 王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.

    WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.
    [10] 刘美山, 吴新霞, 张恒伟, 等. 混凝土水下爆破炸药单耗试验分析 [J]. 爆破, 2007, 24(1): 10–13. DOI: 10.3963/j.issn.1001-487X.2007.01.003.

    LIU M S, WU X X, ZHANG H W, et al. Experimental analysis on specific charge of underwater explosion of concrete [J]. Blasting, 2007, 24(1): 10–13. DOI: 10.3963/j.issn.1001-487X.2007.01.003.
    [11] 董琪, 韦灼彬, 唐廷, 李凌锋, 刘靖晗. 水下爆炸对沉箱重力式码头毁伤效应 [J]. 爆炸与冲击, 2019, 39(6): 065101. DOI: 10.11883/bzycj-2018-0090.

    DONG Q, WEI Z B, TANG T, et al. Damage effects of caisson gravity wharf under underwater explosion [J]. Explosion and Shock Waves, 2019, 39(6): 065101. DOI: 10.11883/bzycj-2018-0090.
    [12] TU Z, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [13] MALVAR L J, ROSS C A. A review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735–739. DOI: 10.14359/418.
    [14] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [15] COLE R H, WELLER R. Underwater explosions [M]. Princeton: Princeton University Press, 1948.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  3595
  • HTML全文浏览量:  1430
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-11-20
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回