The propagation laws of blast wave in unsaturated calcareous sand
-
摘要: 以球形TNT药包作为爆源,在密实的非饱和钙质砂中进行了一系列大尺寸爆炸模型试验。主要研究在不同药包质量、埋深及砂土试样含水率条件下,密实钙质砂中爆炸波的主要基本参数随传播距离增加而变化的规律。试验结果表明爆炸波主要以弹塑性波的形式在密实钙质砂中传播,在干燥和潮湿试样中塑性纵波波速随试样初始密度的增大或含水率的降低而增大,且范围分别为250~282 m/s和302~339 m/s。集团装药情况下,非饱和钙质砂中封闭爆炸的临界比例埋深约为2.25 m/kg1/3。在试验范围内,密实钙质砂中爆炸波的法向应力峰值及法向比冲量的衰减均服从爆炸相似律。封闭爆炸时,干燥钙质砂中爆炸波的应力衰减指数在测点比例爆心距大于或小于0.75 m/kg1/3处分别为2.94或1.37;潮湿钙质砂中爆炸波的应力衰减指数随含水率升高而增大,其范围为1.39~1.79。法向比冲量衰减指数随试样含水率升高而减小,其范围为0.97~1.18。Abstract: A series of large-scale explosion model tests were carried out in dense unsaturated calcareous sand using spherical TNT explosives. The propagation laws of the blast wave in dense calcareous sand were studied under various conditions, such as explosive mass, buried depth and water content of sand sample, based on analyzing the changes of major parameters of blast wave. The results show that the blast wave propagates mainly in the form of elastic-plastic wave in dense calcareous sand. Moreover, the plastic longitudinal wave velocity increases with the increase of initial density in the dry sand sample. For the wet sand sample, the plastic longitudinal wave velocity increase with the decrease of the water content. More specifically, the corresponding longitudinal wave velocity ranges from 250 to 282 m/s in the dry sand and ranges from 302 to 339 m/s in the wet sand. In the case of concentrated charge, the critical scaled buried depth of closed explosion in unsaturated calcareous sand is about 2.25 m/kg1/3. In the test range, the attenuations of peak normal stress and specific normal impulse of the blast wave in dense calcareous sand obey the explosion similarity law. The stress attenuation coefficient of blast wave in dry calcareous sand is 2.94 or 1.37 respectively at the measured points whose scaled distances are greater than or less than 0.75 m/kg1/3. The stress attenuation coefficient of explosion wave in wet calcareous sand increases with the increase of water content and ranges from 1.39 to 1.79. The attenuation coefficient of the specific normal impulse decreases with the increase of the sample water content, and the range is 0.97 to 1.18.
-
表 1 影响砂土中爆炸波传播规律的主要参数
Table 1. Major parameters influencing the propagation of blast wave in sand
参数名称及符号 量纲 炸药 药包质量W [M] 装药密度ρw [ML-3] 单位质量炸药的化学能Ew [L2T-2] 爆炸产物的膨胀指数γ — 砂土 密度ρ0 [ML-3] 塑性纵波波速cp [LT-1] 内摩擦角φ — 试样尺寸 药包中心埋深h [L] 测点到爆心的距离R [L] 表 2 爆炸模型试验参数
Table 2. Designed parameters for explosion model test
试验编号 药包设计质量W/g 设计埋深h/m 设计含水率/% 设计爆心距R/m DCS64-1 64 0.9 1 0.1,0.2,0.3,0.4,0.6,0.8,1.0 DCS64-2 64 0.3 1 0.1,0.2,0.3,0.4,0.6,0.8,1.0 DCS64-3 64 0 1 0.1,0.2,0.3,0.4,0.6,0.8,1.0 DCS216 216 0 1 0.15,0.2,0.3,0.45,0.6,0.8,1.0 DCS512 512 0 1 0.2,0.3,0.4,0.6,0.8,1.0 WCS64-1 64 0.9 10 0.15,0.2,0.3,0.4,0.6,0.8,1.0 WCS64-2 64 0.9 20 0.1,0.2,0.3,0.4,0.6,0.8,1.0 WCS64-3 64 0.9 25 0.1,0.2,0.3,0.4,0.6,0.8,1.0 表 3 实测爆炸试验参数表
Table 3. Summary of measured parameters in explosion test
试验编号 药包质量/g 试样含水率/% 药包埋深/m 试样密度/(g·cm−3) 总质量除以总体积法 环刀取样法 环刀取土钻取样法 DCS64-1 63.6 0.7±0.5 0.90 1.37 1.35±0.02 − DCS64-2 63.1 1.5±0.4 0.31 1.39 1.36±0.04 − DCS64-3 63.3 1.9±0.5 0 1.38 1.36±0.02 − DCS216 214.2 2.1±0.5 0 1.39 1.37±0.03 − DCS512 510.2 2.0±0.3 0 1.38 1.37±0.02 − WCS64-1 62.8 10.5±0.7 0.89 1.54 1.51±0.04 1.54±0.04 WCS64-2 63.3 18.9±1.5 0.92 1.59 1.55±0.07 1.58±0.06 WCS64-3 63.1 23.7±2.2 0.91 1.80 1.76±0.06 1.81±0.04 表 4 密实钙质砂中的爆炸波波速
Table 4. The blast wave velocity in dense calcareous sand
试验编号 密度/(g·cm−3) 弹性纵波波速c0/(m·s−1) R2 塑性纵波波速cp/(m·s−1) R2 DCS64-1 1.37 359 0.998 250 0.995 DCS64-2 1.39 344 0.998 282 0.995 DCS64-3 1.38 291 0.998 265 0.997 DCS216 1.39 332 0.999 278 0.999 DCS512 1.38 339 0.999 274 0.999 WCS64-1 1.50 429 0.999 377 0.998 WCS64-2 1.59 387 0.998 315 0.996 WCS64-3 1.80 374 0.999 302 0.999 表 5 干燥钙质砂法向应力峰值衰减规律参数值
Table 5. The parameters of attenuation law of peak normal stress in dry calcareous sand
试验编号 $K_{\sigma} $ $\mu_{\sigma} $ R2 $K_{\sigma} $ $\mu_{\sigma} $ R2 第一段(R*≤0.75 m/kg1/3) 第二段(R*>0.75 m/kg1/3) DCS64-1 0.944 2.94 0.998 1.474 1.37 0.976 DCS64-2 DCS64-3 0.548 3.11 0.961 0.79 1.83 0.938 DCS216 DCS512 表 6 潮湿钙质砂法向应力峰值衰减规律参数值
Table 6. The parameters for attenuation law of peak normal stress in moist calcareous sand
试验编号 $K_{\sigma} $ $\mu_{\sigma} $ R2 WCS64-1 1.805 1.39 0.965 WCS64-2 1.530 1.55 0.986 WCS64-3 2.200 1.79 0.978 表 7 非饱和钙质砂刚壁反射因数
Table 7. The rigid reflection coefficient of unsaturated calcareous sand
试验编号 外推自由场应力峰值σI,max/MPa 实测反射波应力峰值σR,max/MPa 刚壁反射因数σR,max/σI,max DCS64-1 0.421 0.675 1.603 DCS64-2 0.421 0.635 1.508 DCS64-3 0.149 0.219 1.473 DCS216 0.311 0.458 1.473 DCS512 0.529 0.796 1.504 WCS64-1 0.505 0.804 1.592 WCS64-2 0.368 0.451 1.225 WCS64-3 0.430 0.537 1.249 表 8 非饱和钙质砂中折合比冲量衰减公式参数值
Table 8. The parameters of attenuation law of specific impulse in unsaturated calcareous sand
试验编号 KI μI R2 DCS64-1 7.57 1.15 0.944 DCS64-2 5.54 1.14 0.975 DCS64-3 1.57 1.16 0.933 DCS216 DCS512 WCS64-1 5.33 1.18 0.959 WCS64-2 4.92 1.02 0.901 WCS64-3 4.65 0.97 0.946 -
[1] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995(4): 74–84. DOI: 10.16285/j.rsm.1995.04.010.LIU C Q, YANG Z Q, WANG R. The present condition and development in studies of mechanical properties of calcareous soils [J]. Rock and Soil Mechanics, 1995(4): 74–84. DOI: 10.16285/j.rsm.1995.04.010. [2] 陈海洋. 钙质砂的内孔隙研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005: 1−11. [3] 陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析 [J]. 岩土力学, 2005, 26(9): 1389–1392. DOI: 10.3969/j.issn.1000-7598.2005.09.008.CHEN H Y, WANG R, LI J G, et al. Grain shape analysis of calcareous soil [J]. Rock and Soil Mechanics, 2005, 26(9): 1389–1392. DOI: 10.3969/j.issn.1000-7598.2005.09.008. [4] 张家铭. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2004: 1−9. [5] 虞海珍. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学, 2006: 1−16. [6] 李建国. 波浪荷载作用下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005: 1−10. [7] SOCHET I, GARDEBAS D, CALDERARA S. Fundamental of protective design for conventional weapons: TM5-855-1[R]. Department of The Army Technical Manual, USA Army Corps of Engineers. 1986. [8] LYAKHOV G M. Fundamentals of explosion dynamics in soils and liquid media [M]. Moscow: Nedra, 1964. [9] LYAKHOV G M, OSADCHENKO R A, POLYAKOVA N I. Plane waves in nonhomogeneous plastic media and their interaction with obstacles [J]. Journal of Applied Mechanics and Technical Physics, 1969, 10(4): 559–566. DOI: 10.1007/bf00916211. [10] ZAKHAROV S D, LYAKHOV G M, MIZYAKIN S D. Determination of the dynamic compressibility of soil based on the parameters of plane detonation waves [J]. Journal of Applied Mechanics and Technical Physics, 1972, 13(1): 126–130. DOI: 10.1007/BF00852370. [11] LYAKHOV G M, OKHITIN V N. Spherical blast waves in multicomponent media [J]. Journal of Applied Mechanics and Technical Physics, 1974, 15(2): 208–214. DOI: 10.1007/BF00850660. [12] LYAKHOV G M, VOVK A A, KRAVETS V G, et al. Compaction of loessal soils by detonation of surface charges [J]. Soil Mechanics and Foundation Engineering, 1976, 13(2): 121–125. DOI: 10.1007/BF01703745. [13] LYAKHOV G M. Waves in soils and porous multicomponent media [M]. Nauka, Moscow, 1982. [14] LYAKHOV G M, SALITSKAYA V I. Dissipation of blast waves and the dynamic compressibility of soils [J]. Combustion, Explosion and Shock Waves, 1983, 19(1): 90–93. DOI: 10.1007/BF00790244. [15] KRYMSKⅡ A V, LYAKHOV G M. Waves from an underground explosion [J]. Journal of Applied Mechanics and Technical Physics, 1984, 25(3): 361–367. DOI: 10.1007/BF00910394. [16] LYAKHOV G M, LUCHKO I A, PLAKSⅡ V A, et al. Spherical detonation waves in a solid multicomponent viscoplastic medium [J]. Soviet Applied Mechanics, 1986, 22(5): 490–495. DOI: 10.1007/BF00888551. [17] 梁霍夫 Г M. 岩土中爆炸动力学基础[M]. 刘光寰, 王明洋, 译. 南京: 工程兵工程学院, 1993. [18] KARINSKI Y S, FELDGUN V R, YANKELEVSKY D Z. Effect of soil locking on the cylindrical shock wave’s peak pressure attenuation [J]. Journal of engineering mechanics, 2009, 135(10): 1166–1179. DOI: 10.1061/(ASCE)EM.1943-7889.0000042. [19] YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011. [20] KARINSKI Y S, FELDGUN V R, RACAH E, et al. Mach stem due to an underground explosion near a rigid structure buried in soil [J]. Shock Waves, 2015, 25(1): 63–76. DOI: 10.1007/s00193-014-0544-1. [21] 徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究 [J]. 岩土力学, 2012, 33(10): 2953–2959. DOI: 10.16285/j.rsm.2012.10.005.XU X Y, WANG R, WANG X Z, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion [J]. Rock and Soil Mechanics, 2012, 33(10): 2953–2959. DOI: 10.16285/j.rsm.2012.10.005. [22] 徐学勇. 饱和钙质砂爆炸响应动力特性研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2009: 89−91. [23] 谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015. [24] MULILIS J P, ARULANANDAN K, MITCHELL J K, et al. Effects of sample preparation on sand liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91–108. DOI: 10.1016/0148-9062(77)90060-2. [25] LADD R S. Specimen preparation and cyclic stability of sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103(GT-6). DOI: 10.1016/0148-9062(75)91261-9. [26] JUANG C H, HOLTZ R D. Fabric, pore size distribution, and permeability of sandy soils [J]. Journal of Geotechnical Engineering, 1986, 112(9): 855–868. DOI: 10.1061/(ASCE)0733-9410(1986)112:9(855). [27] NIMMO J R, AKSTIN K C. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods [J]. Soil Science Society of America Journal, 1988, 52(2): 303–310. DOI: 10.2136/sssaj1988.03615995005200020001x. [28] 亨利奇 J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987. [29] 谢多夫 Л Н. 力学中的相似方法与量纲理论[M]. 沈青, 译. 北京: 科学出版社, 1982. [30] 马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究 [J]. 岩石力学与工程学报, 2011(S1): 3172–3178.MA L Q, ZHANG J M. Centrifugal model testing study of explosion induced craters and propagation of ground shock in clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011(S1): 3172–3178. [31] 穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112–116. DOI: 10.7666/j.issn.1009-3443.20100203.MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112–116. DOI: 10.7666/j.issn.1009-3443.20100203. [32] 施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05. [33] 叶亚齐, 任辉启, 李永池, 等. 砂质黏土中不同深度爆炸自由场地冲击参数预计方法研究 [J]. 岩石力学与工程学报, 2011, 30(9): 1918–1923.YE Y Q, REN H Q, LI Y C, et al. Study of prediction of ground shock parameters in free field at different depths of burst in sandy clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1918–1923. [34] 奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011. [35] 水利电力部. 土工试验方法标准: GB/T 50123-2019 [S]. [36] 贾永胜, 王维国, 谢先启, 等. 低含水率砂土和饱和砂土场地爆炸成坑特性实验 [J]. 爆炸与冲击, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.JIA Y S, WANG W G, XIE X Q, et al. Characterization of blast-induced craters in low-moisture and saturated sand from field experiments [J]. Explosion and Shock Waves, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08. [37] KRAUTHAMMER T. Modern protective structures [M]. CRC Press, 2008. [38] 波克罗夫斯基 Г И, 费多罗夫 И С. 在变形介质中冲击与爆破作用[M]. 刘清荣, 黄文彬, 译. 北京: 中国工业出版社, 1965.