Synthesis of nanometer titanium carbide by detonation shock wave

YU Yanwu JIA Kanghui WEI Zihui RU Ruifeng

于雁武, 贾康辉, 魏子辉, 茹锐锋. 爆炸冲击合成纳米碳化钛的研究[J]. 爆炸与冲击, 2020, 40(9): 092302. doi: 10.11883/bzycj-2019-0395
引用本文: 于雁武, 贾康辉, 魏子辉, 茹锐锋. 爆炸冲击合成纳米碳化钛的研究[J]. 爆炸与冲击, 2020, 40(9): 092302. doi: 10.11883/bzycj-2019-0395
YU Yanwu, JIA Kanghui, WEI Zihui, RU Ruifeng. Synthesis of nanometer titanium carbide by detonation shock wave[J]. Explosion And Shock Waves, 2020, 40(9): 092302. doi: 10.11883/bzycj-2019-0395
Citation: YU Yanwu, JIA Kanghui, WEI Zihui, RU Ruifeng. Synthesis of nanometer titanium carbide by detonation shock wave[J]. Explosion And Shock Waves, 2020, 40(9): 092302. doi: 10.11883/bzycj-2019-0395

爆炸冲击合成纳米碳化钛的研究

doi: 10.11883/bzycj-2019-0395
详细信息
  • 中图分类号: O389; O521.3

Synthesis of nanometer titanium carbide by detonation shock wave

Funds: Open cooperative innovation project of Xi’an modern chemistry research institute (20190387)
More Information
    Author Bio:

    YU Yanwu (1977− ), male, Ph.D., associate professor, 815274820@qq.com

  • 摘要: 本文利用奥克托今炸药(HMX)作为高温、高压源,二氧化钛(TiO2)和活性炭(C)作为前驱体,采用爆炸冲击合成的方法制备纳米碳化钛(TiC)粉末。运用X射线衍射分析仪(XRD)、X射线能谱分析仪(EDS) 及扫描电子显微镜(SEM) 对样品进行了分析与表征。探讨了爆炸冲击波作用下TiC的合成机理。结果表明:XRD和EDS测试值与理论值相符性很好,样品中同时含有TiC和TiCxx<1);SEM照片显示TiC和TiCxx<1)的粒径均小于50 nm,样品中存在微米级的球形团聚体;爆炸冲击合成TiC属于特殊的固相反应,其物质扩散速度和反应速度大大提高。
  • Figure  1.  Experimental device

    1. precucers; 2. HMX; 3. electric detonator; 4. reaction vessel; 5. methylmethacrylate; 6. steel sleeve; 7. bed plate

    Figure  2.  SEM images of raw material

    Figure  3.  XRD patterns of the prepared titanium carbide

    Figure  4.  SEM images of the samples

    Table  1.   EDS spectrum of integral sample

    ElementLineWeight/%
    CK 23.36
    OK 12.51
    AlK 1.67
    SiK 18.87
    TiK 42.20
    FeK 1.39
    Total100.00
    下载: 导出CSV

    Table  2.   EDS spectrum of Spherical aggregate

    ElementLineWeight/%
    CK 28.14
    OK 22.87
    AlK 2.11
    SiK 6.91
    TiK 36.33
    FeK 3.64
    Total100.00
    下载: 导出CSV
  • [1] LIU Y, ZENG L K. Titanium carbide ceramics and their applications [M]. Beijing: Chemical Industry Press, 2008.
    [2] CHEN Y Y, ZOU Z G, LONG F. Synthesis of TiC-based cermet and the status-quo of its research and application [J]. Titanium Industry Progress, 2007, 24(3): 5–9. DOI: 10.3969/j.issn.1009-9964.2007.03.002.
    [3] GRITZALIS D. Reliability, quality and safety of software-intensive systems [M]. Boston: Springer, 1997. DOI: 10.1007/978-0-387-35097-4.
    [4] OUCHI H, NAGANO K, HAYAKAWA S. Piezoelectric properties of Pb(Mg1/3Nb2/3)O3—PbTiO3—PbZrO3 solid solution ceramics [J]. Journal of the American Ceramic Society, 1965, 48(12): 630–635. DOI: 10.1111/j.1151-2916.1965.tb14694.x.
    [5] MORELLI T, FOLEY J, LIEBERMAN L, et al. Pet-N-punch: upper body tactile/audio exergame to engage children with visual impairments into physical activity [C]// Proceedings of Graphics Interface 2011. St. John's: ACM, 2011: 223−230.
    [6] WANG J S, ZHOU M L, ZHANG J X, et al. A study on titanium carbide produced by combustion synthesis [J]. Journal of Beijing Polytechnic University, 1998, 24(3): 29–33.
    [7] LOHSE B H, CALKA A, WEXLER D. Effect of starting composition on the synthesis of nanocrystalline TiC during milling of titanium and carbon [J]. Journal of Alloys and Compounds, 2005, 394(1/2): 148–151. DOI: 10.1016/j.jallcom.2004.09.074.
    [8] PREISS H, BERGER L M, SCHULTZE D. Studies on the carbothermal preparation of titanium carbide from different gel precursors [J]. Journal of the European Ceramic Society, 1999, 19(2): 195–206. DOI: 10.1016/S0955-2219(98)00190-3.
    [9] KOC R, FOLMER J S. Carbothermal synthesis of titanium carbide using ultrafine titania powders [J]. Journal of Materials Science, 1997, 32(12): 3101–3111. DOI: 10.1023/A:1018634214088.
    [10] GUO H M, SHU W B, QIAO S R, et al. Thermodynamic and kinetic studies on chemical vapor deposition process of TiC [J]. Journal of Materials Engineering, 1998(10): 25–29.
    [11] CHEN C K, LIU Z Y, XIANG J Y, et al. Study on synthesis mechanism of nano-TiC powders prepared by mechanical alloying [J]. Journal of Yanshan University, 2012, 36(2): 136–140. DOI: 10.3969/j.issn.1007-791X.2012.02.008.
    [12] WANG Z S, LIU Y C, ZHENG M, et al. Study on the attenuating model of detonation shock wave in the PMMA gap [J]. Journal of Basic Science and Engineering, 2001, 9(4): 316–319. DOI: 10.3969/j.issn.1005-0930.2001.04.004.
    [13] SEN W. Preparation of micron titanium carbide powder by carbothermal reduction TiO2 method [D]. Kunming: Kunming University of Science and Technology, 2011.
    [14] PREISS H, LUTZ-MICHAEL B, SCHULTZE D. ChemInform abstract: studies on the carbothermal preparation of titanium carbide from different gel precursors [J]. ChemInform, 1999, 30(17). DOI: 10.1002/chin.199917295.
    [15] WEN M F, WANG Q P, CHEN J, et al. Study on the crystal transformation of nano-titania [J]. Journal of Functional Materials, 2004, 35(5): 651–653. DOI: 10.3321/j.issn:1001-9731.2004.05.042.
    [16] YANG J, LIN Z M, CUI M, et al. Synthesis of Si3N4 by silicon combustion in air [J]. Journal of Inorganic Materials, 2007, 22(4): 590–594. DOI: 10.3321/j.issn:1000-324x.2007.04.003.
    [17] WANG J X, YANG S Y, HE H L, et al. Study on the mechanism of PZT95/5 powder synthesis by shock waves [J]. Chinese Journal of high Pressure Physics, 2007, 21(3): 322–326. DOI: 10.11858/gywlxb.2007.03.018.
    [18] WANG J X, YANG S Y, HE H L, et al. Structure and properties of Pb(Zr0.95Ti0.05)O3 powder synthesized by shock-wave technique [J]. Journal of the Chinese Ceramic Society, 2005, 33(6): 718–722. DOI: 10.3321/j.issn:0454-5648.2005.06.012.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  3300
  • HTML全文浏览量:  1099
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2019-12-16
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回