含双侧分支受限空间油气爆炸火焰行为与超压特性大涡模拟

刘冲 杜扬 梁建军 张培理 孟红

刘冲, 杜扬, 梁建军, 张培理, 孟红. 含双侧分支受限空间油气爆炸火焰行为与超压特性大涡模拟[J]. 爆炸与冲击, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408
引用本文: 刘冲, 杜扬, 梁建军, 张培理, 孟红. 含双侧分支受限空间油气爆炸火焰行为与超压特性大涡模拟[J]. 爆炸与冲击, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408
LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408
Citation: LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408

含双侧分支受限空间油气爆炸火焰行为与超压特性大涡模拟

doi: 10.11883/bzycj-2019-0408
基金项目: 国家自然科学基金青年基金(51704301)
详细信息
    作者简介:

    刘 冲(1989- ),男,博士研究生,generalsir2013@163.com

    通讯作者:

    张培理(1985- ),男,博士,讲师,zpl612323@163.com

  • 中图分类号: O354;X932

Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches

  • 摘要: 为研究含分支结构狭长受限空间油气爆炸特性规律,基于大涡模拟WALE模型和Zimont预混火焰模型,对横截面为100 mm×100 mm的含双侧分支管道受限空间油气泄压爆炸特性进行了数值模拟。通过对火焰形态、火焰传播速度和动态超压3个物理量的对比,验证了所建立模型对于含分支结构受限空间油气爆炸计算的适用性。基于数值模拟结果,对爆炸过程中的流场结构、火焰形态和超压变化规律进行了分析,指出了“浪花状”火焰的形成原因。结果表明:(1)火焰传播进入分支管道前,在主管道和分支管道交界处会产生旋转方向相反的对称涡旋结构,并随着火焰传播不断向分支管道内部发展;(2)当火焰传播进入分支管道后,分支管道内部前期已建立流场决定了火焰的形态,火焰锋面在涡旋结构作用下呈“浪花状”,此后火焰和流场相互影响,流场向湍流转捩,火焰锋面褶皱变形;(3)爆炸超压升压过程可划分为4个阶段,受到火焰锋面面积和分支管道泄压共同作用,表明爆炸流场、火焰行为和动态超压呈现出显著耦合性。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  实验管道

    Figure  2.  Experimental pipe

    图  3  网格划分

    Figure  3.  Computational grids

    图  4  实验和数值模拟的火焰形态

    Figure  4.  Experimental and simulated flame structures

    图  5  实验和数值模拟的火焰位置

    Figure  5.  Experimental and simulated flame front locations

    图  6  实验和数值模拟的火焰速度

    Figure  6.  Experimental and simulated flame speeds

    图  7  P1处实验和数值模拟的爆炸超压曲线

    Figure  7.  Experimental and simulated overpressure curvesat point P1

    图  8  P1和P2处数值模拟的爆炸超压曲线

    Figure  8.  Simulated overpressure curves at points P1 and P2

    图  9  火焰传播形态和流场速度矢量

    Figure  9.  Flame propagations and velocity vectors of flow field

    图  10  数值模拟的超压曲线和火焰传播形态

    Figure  10.  Simulated overpressure curve and flame propagation structure

    表  1  实验和数值模拟的典型超压峰值

    Table  1.   Experimental and simulated typical overpressure peaks

    方法 p1/kPa ε1/% p2/kPa ε2/% pmax/kPa εmax/%
    实验 12 0 25 0 58 0
    数值模拟 27 8.0 67 15.5
    下载: 导出CSV
  • [1] SUN S C, LIU G, LIU J X, et al. Effect of porosity and element thickness on flame quenching for in-line crimped-ribbon flame arresters [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 221–228. DOI: 10.1016/j.jlp.2017.09.017.
    [2] 王波, 杜扬, 齐圣, 等. 油气爆炸在细长密闭管道内的振荡传播特性 [J]. 振动与冲击, 2017, 36(17): 97–103, 126. DOI: 10.13465/j.cnki.jvs.2017.17.016.

    WANG B, DU Y, QI S, et al. Oscillation propagation characteristics of gasoline-air mixture explosion in elongated closed tubes [J]. Journal of Vibration and Shock, 2017, 36(17): 97–103, 126. DOI: 10.13465/j.cnki.jvs.2017.17.016.
    [3] 杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性 [J]. 爆炸与冲击, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.

    DU Y, WANG S M, QI S, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top [J]. Explosion and Shock Waves, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.
    [4] QI S, DU Y, WANG S M, et al. The effect of vent size and concentration in vented gasoline-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88–94. DOI: 10.1016/j.jlp.2016.08.005.
    [5] YU M G, WAN S J, ZHENG K, et al. Influence on the methane/air explosion characteristics of the side venting position in a pipeline [J]. Process Safety and Environmental Protection, 2017, 111: 292–299. DOI: 10.1016/j.psep.2017.07.017.
    [6] 李国庆, 杜扬, 齐圣, 等. 连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟 [J]. 爆炸与冲击, 2018, 38(6): 1286–1394. DOI: 10.11883/bzycj-2017-0215.

    LI G Q, DU Y, QI S, et al. Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles [J]. Explosion and Shock Waves, 2018, 38(6): 1286–1394. DOI: 10.11883/bzycj-2017-0215.
    [7] LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. Journal of Hazardous Materials, 2017, 339: 131–142. DOI: 10.1016/j.jhazmat.2017.06.018.
    [8] WEN X P, YU M G, JI W T, et al. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. DOI: 10.1016/j.ijmst.2015.02.008.
    [9] BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004.
    [10] ZHU C J, LIN B Q, JIANG B Y. Flame acceleration of premixed methane/air explosion in parallel pipes [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 383–390. DOI: 10.1016/j.jlp.2011.10.004.
    [11] XIAO H H, HE X C, WANG Q S, et al. Experimental and numerical study of premixed flame propagation in a closed duct with a 90° curved section [J]. International Journal of Heat and Mass Transfer, 2013, 66: 818–822. DOI: 10.1016/j.ijheatmasstransfer.2013.07.091.
    [12] ZHU C J, LIN B Q, YE Q, et al. Effect of roadway turnings on gas explosion propagation characteristics in coal mines [J]. Mining Science and Technology (China), 2011, 21(3): 365–369. DOI: 10.1016/j.mstc.2011.05.006.
    [13] NIU Y H, SHI B M, JIANG B Y. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks [J]. Applied Thermal Engineering, 2019, 154: 18–23. DOI: 10.1016/j.applthermaleng.2019.03.059.
    [14] ZHANG P L, DU Y, ZHOU Y, et al. Explosions of gasoline-air mixture in the tunnels containing branch configuration [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1279–1284. DOI: 10.1016/j.jlp.2013.07.003.
    [15] LI G Q, DU Y, QI S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 529–536. DOI: 10.1016/j.jlp.2016.07.022.
    [16] 杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.

    DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
    [17] 杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.

    DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
    [18] 刘冲, 杜扬, 李国庆, 等. 狭长密闭空间内油气爆炸火焰特性大涡模拟 [J]. 化工学报, 2018, 69(12): 5348–5358. DOI: 10.11949/j.issn.0438-1157.20180614.

    LIU C, DU Y, LI G Q, et al. Large eddy simulation of gasoline-air mixture explosion in closed narrow-long space [J]. CIESC Journal, 2018, 69(12): 5348–5358. DOI: 10.11949/j.issn.0438-1157.20180614.
    [19] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. DOI: 10.1023/A:1009995426001.
    [20] ZIMONT V L, BATTAGLIA V. Joint RANS/LES approach to premixed flamemodelling in the context of the TFC combustion model [J]. Flow, Turbulence and Combustion, 2006, 77(1−4): 305–331. DOI: 10.1007/s10494-006-9048-0.
    [21] 温小萍. 瓦斯湍流爆燃火焰特性与多孔介质淬熄抑爆机理研究[D]. 大连: 大连理工大学, 2014: 63−65.
    [22] ZHENG K, YU M G, LIANG Y P, et al. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(7): 3871–3884. DOI: 10.1016/j.ijhydene.2018.01.045.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  4480
  • HTML全文浏览量:  1650
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 修回日期:  2020-03-25
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回