Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches
-
摘要: 为研究含分支结构狭长受限空间油气爆炸特性规律,基于大涡模拟WALE模型和Zimont预混火焰模型,对横截面为100 mm×100 mm的含双侧分支管道受限空间油气泄压爆炸特性进行了数值模拟。通过对火焰形态、火焰传播速度和动态超压3个物理量的对比,验证了所建立模型对于含分支结构受限空间油气爆炸计算的适用性。基于数值模拟结果,对爆炸过程中的流场结构、火焰形态和超压变化规律进行了分析,指出了“浪花状”火焰的形成原因。结果表明:(1)火焰传播进入分支管道前,在主管道和分支管道交界处会产生旋转方向相反的对称涡旋结构,并随着火焰传播不断向分支管道内部发展;(2)当火焰传播进入分支管道后,分支管道内部前期已建立流场决定了火焰的形态,火焰锋面在涡旋结构作用下呈“浪花状”,此后火焰和流场相互影响,流场向湍流转捩,火焰锋面褶皱变形;(3)爆炸超压升压过程可划分为4个阶段,受到火焰锋面面积和分支管道泄压共同作用,表明爆炸流场、火焰行为和动态超压呈现出显著耦合性。Abstract: In order to study the gasoline/air mixture explosion characteristics in semi-confined spaces with branched structures, a large eddy simulation model based on WALE turbulence model and the Zimont premixed flame model was established. The explosion characteristics of semi-confined space with bilateral branches ware studied through the simulation. The applicability of the established model for the calculation of gasoline/air mixture explosion in semi-confined spaces with bilateral branches is verified by comparing of flame shape, flame propagation velocity and dynamic overpressure. The flow field, flame behavior and overpressure variation during the explosion process were analyzed through the numerical simulation results and the reasons for the formation of “splash-like” flame were pointed out, and the following results were obtained. (1) Before the flame propagates into the branch pipes, two symmetric vortex structure with opposite rotation directions are generated at the junctions of the main pipe and two branch pipes, and develop toward the inside of the branch pipes as the flame propagates continuously. (2) When the flame propagates into branch pipes, the flow field established in the early stage determines the shape of the flame. The flame front forms a “splash-like” flame under the action of the vortex structure. After that, the flame and the flow field interact with each other turning to the turbulent flow and distorted flame front. (3) The growing process of the overpressure can be divided into four stages, which are influenced by the flame front area and the branch pipe pressure unload, indicating that the explosion flow field, flame behavior and dynamic overpressure have significant coupling effects.
-
表 1 实验和数值模拟的典型超压峰值
Table 1. Experimental and simulated typical overpressure peaks
方法 p1/kPa ε1/% p2/kPa ε2/% pmax/kPa εmax/% 实验 12 0 25 0 58 0 数值模拟 — — 27 8.0 67 15.5 -
[1] SUN S C, LIU G, LIU J X, et al. Effect of porosity and element thickness on flame quenching for in-line crimped-ribbon flame arresters [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 221–228. DOI: 10.1016/j.jlp.2017.09.017. [2] 王波, 杜扬, 齐圣, 等. 油气爆炸在细长密闭管道内的振荡传播特性 [J]. 振动与冲击, 2017, 36(17): 97–103, 126. DOI: 10.13465/j.cnki.jvs.2017.17.016.WANG B, DU Y, QI S, et al. Oscillation propagation characteristics of gasoline-air mixture explosion in elongated closed tubes [J]. Journal of Vibration and Shock, 2017, 36(17): 97–103, 126. DOI: 10.13465/j.cnki.jvs.2017.17.016. [3] 杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性 [J]. 爆炸与冲击, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.DU Y, WANG S M, QI S, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top [J]. Explosion and Shock Waves, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08. [4] QI S, DU Y, WANG S M, et al. The effect of vent size and concentration in vented gasoline-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88–94. DOI: 10.1016/j.jlp.2016.08.005. [5] YU M G, WAN S J, ZHENG K, et al. Influence on the methane/air explosion characteristics of the side venting position in a pipeline [J]. Process Safety and Environmental Protection, 2017, 111: 292–299. DOI: 10.1016/j.psep.2017.07.017. [6] 李国庆, 杜扬, 齐圣, 等. 连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟 [J]. 爆炸与冲击, 2018, 38(6): 1286–1394. DOI: 10.11883/bzycj-2017-0215.LI G Q, DU Y, QI S, et al. Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles [J]. Explosion and Shock Waves, 2018, 38(6): 1286–1394. DOI: 10.11883/bzycj-2017-0215. [7] LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. Journal of Hazardous Materials, 2017, 339: 131–142. DOI: 10.1016/j.jhazmat.2017.06.018. [8] WEN X P, YU M G, JI W T, et al. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. DOI: 10.1016/j.ijmst.2015.02.008. [9] BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004. [10] ZHU C J, LIN B Q, JIANG B Y. Flame acceleration of premixed methane/air explosion in parallel pipes [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 383–390. DOI: 10.1016/j.jlp.2011.10.004. [11] XIAO H H, HE X C, WANG Q S, et al. Experimental and numerical study of premixed flame propagation in a closed duct with a 90° curved section [J]. International Journal of Heat and Mass Transfer, 2013, 66: 818–822. DOI: 10.1016/j.ijheatmasstransfer.2013.07.091. [12] ZHU C J, LIN B Q, YE Q, et al. Effect of roadway turnings on gas explosion propagation characteristics in coal mines [J]. Mining Science and Technology (China), 2011, 21(3): 365–369. DOI: 10.1016/j.mstc.2011.05.006. [13] NIU Y H, SHI B M, JIANG B Y. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks [J]. Applied Thermal Engineering, 2019, 154: 18–23. DOI: 10.1016/j.applthermaleng.2019.03.059. [14] ZHANG P L, DU Y, ZHOU Y, et al. Explosions of gasoline-air mixture in the tunnels containing branch configuration [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1279–1284. DOI: 10.1016/j.jlp.2013.07.003. [15] LI G Q, DU Y, QI S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 529–536. DOI: 10.1016/j.jlp.2016.07.022. [16] 杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06. [17] 杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522. [18] 刘冲, 杜扬, 李国庆, 等. 狭长密闭空间内油气爆炸火焰特性大涡模拟 [J]. 化工学报, 2018, 69(12): 5348–5358. DOI: 10.11949/j.issn.0438-1157.20180614.LIU C, DU Y, LI G Q, et al. Large eddy simulation of gasoline-air mixture explosion in closed narrow-long space [J]. CIESC Journal, 2018, 69(12): 5348–5358. DOI: 10.11949/j.issn.0438-1157.20180614. [19] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. DOI: 10.1023/A:1009995426001. [20] ZIMONT V L, BATTAGLIA V. Joint RANS/LES approach to premixed flamemodelling in the context of the TFC combustion model [J]. Flow, Turbulence and Combustion, 2006, 77(1−4): 305–331. DOI: 10.1007/s10494-006-9048-0. [21] 温小萍. 瓦斯湍流爆燃火焰特性与多孔介质淬熄抑爆机理研究[D]. 大连: 大连理工大学, 2014: 63−65. [22] ZHENG K, YU M G, LIANG Y P, et al. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(7): 3871–3884. DOI: 10.1016/j.ijhydene.2018.01.045. 期刊类型引用(19)
1. 贾皓琦,黄永辉,张智宇. 基于小波包理论研究地下断层对爆破振动传播的影响. 有色金属(矿山部分). 2024(02): 35-44 . 百度学术
2. 王国斌,代先尧,张永权,叶铭. 新建隧道爆破开挖对路基边坡稳定性影响分析. 工程爆破. 2024(01): 53-58 . 百度学术
3. 刘明武,黄永辉,李争荣,贾皓琦,甘等俊,李洪超,张智宇. 基于小波变换算法的普朗铜矿爆破振动信号能量分布研究. 中国矿业. 2024(03): 226-234 . 百度学术
4. 巩瑞杰,袁腾,叶会师,黄汉波,闫鹏. 基于最小一乘法的露天矿爆破振动预测. 华北理工大学学报(自然科学版). 2024(02): 41-49 . 百度学术
5. 黄传胜,阳鑫,林继华,徐昊,胡德玉,任开富. 双线隧道爆破初期支护结构的动态响应特性. 深圳大学学报(理工版). 2024(04): 490-498 . 百度学术
6. 彭悦森,钟冬望,王朝振,白文良,赵云鹏,陆洪平,李洪林,杨志龙. 极小净距隧道先行洞振动响应特性及衰减规律研究. 爆破. 2024(03): 111-120 . 百度学术
7. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 . 百度学术
8. 马跃原,何宏海,张勇,铁继康,刘国锋,江伟,高启栋. 小净距大断面隧道先行洞爆破振动响应特性分析及其安全控制. 爆破. 2023(02): 172-179+216 . 百度学术
9. 杨之光,丁鸿程,阎广斌,吴红刚. 近接文保区隧道施工爆破振动分析. 价值工程. 2023(24): 138-140 . 百度学术
10. 项荣军,刘传鹏,李胜林,凌天龙. 隧道内部爆破振动传播规律与降振技术研究. 爆破. 2023(04): 82-88+200 . 百度学术
11. 贾永胜,陈德志,何理,王洪刚,舒震,王威. 精确延时爆破振动时频特征及实际延时识别研究. 工程爆破. 2023(06): 1-9 . 百度学术
12. 朱大鹏,谢昌建,许红波. 隧道进口岩堆斜坡爆破振动动力响应研究. 安全与环境学报. 2022(03): 1275-1283 . 百度学术
13. 毛祚财. 原位扩建隧道爆破振动的现场测试与小波分析. 工程爆破. 2022(03): 103-110 . 百度学术
14. 梁娟. 基于粒子群算法的爆破振动速度智能预测方法. 工程爆破. 2022(03): 117-121+136 . 百度学术
15. 何理,刘易和,李琳娜,陈江伟,姚颖康,刘昌邦. 基于粒子群-最小二乘支持向量机模型的矿山爆破振动速度预测. 金属矿山. 2022(07): 145-150 . 百度学术
16. 单仁亮,赵岩,王海龙,董捷,仝潇,李兆龙,王东升. 下穿铁路隧道爆破振动衰减规律研究. 爆炸与冲击. 2022(08): 145-159 . 本站查看
17. 罗如登,鲍志斌,王正阳. 路基边坡逐孔微差爆破对邻近桥梁的影响. 爆破器材. 2022(05): 59-64 . 百度学术
18. 赵岩,王小敬,王海龙,王东升. 交叉隧道爆破振速回归分析及对比研究. 工程爆破. 2022(05): 121-127 . 百度学术
19. 何理,杨仁树,钟东望,李鹏,吴春平,陈江伟. 毫秒延时爆破等效单响药量计算及振速预测. 爆炸与冲击. 2021(09): 132-144 . 本站查看
其他类型引用(9)
-