一种散体材料SHPB被动围压试验体应力修正方法

魏久淇 张春晓 曹少华 王世合 李磊

魏久淇, 张春晓, 曹少华, 王世合, 李磊. 一种散体材料SHPB被动围压试验体应力修正方法[J]. 爆炸与冲击, 2020, 40(12): 124201. doi: 10.11883/bzycj-2019-0411
引用本文: 魏久淇, 张春晓, 曹少华, 王世合, 李磊. 一种散体材料SHPB被动围压试验体应力修正方法[J]. 爆炸与冲击, 2020, 40(12): 124201. doi: 10.11883/bzycj-2019-0411
WEI Jiuqi, ZHANG Chunxiao, CAO Shaohua, WANG Shihe, LI Lei. A volume stress correction method for SHPB passiveconfined pressure of granular materials[J]. Explosion And Shock Waves, 2020, 40(12): 124201. doi: 10.11883/bzycj-2019-0411
Citation: WEI Jiuqi, ZHANG Chunxiao, CAO Shaohua, WANG Shihe, LI Lei. A volume stress correction method for SHPB passiveconfined pressure of granular materials[J]. Explosion And Shock Waves, 2020, 40(12): 124201. doi: 10.11883/bzycj-2019-0411

一种散体材料SHPB被动围压试验体应力修正方法

doi: 10.11883/bzycj-2019-0411
详细信息
    作者简介:

    魏久淇(1990- ),男,硕士,工程师,weijiuqi61489@163.com

    通讯作者:

    张春晓(1980- ),男,硕士,副研究员,cxz_007@163.com

  • 中图分类号: O341; O344

A volume stress correction method for SHPB passiveconfined pressure of granular materials

  • 摘要: 本文利用有限元仿真给出了一种修正方法,并用数值仿真和试验验证了该方法的可靠性。研究表明:散体材料SHPB被动围压试验中,试样厚度远小于厚壁圆筒长度时,端部效应会导致厚壁圆筒不均匀凸出变形,计算材料的体应力-应变关系不能将厚壁圆筒应力状态简化为平面应力问题;厚壁圆筒处于弹性状态下,通过厚壁圆筒理论计算出的径向力与真实径向力存在一定比例关系,在一定范围内,折算系数与试样实时厚度呈二次函数关系。
  • 图  1  散体材料受约束的几何结构

    Figure  1.  Geometric structure constrained by SHPB test for bulk material

    图  2  试验时厚壁圆筒的几何变形图

    Figure  2.  Geometric deformation diagram of thick-walled cylinder in test

    图  3  阶梯型套筒[15]

    Figure  3.  Ladder sleeve[15]

    图  4  厚壁圆筒受力分析

    Figure  4.  Force analysis of thick-walled cylinder

    图  5  厚壁圆筒模型

    Figure  5.  Thick-walled cylinder model

    图  6  径向力${\sigma _{\rm{ss}}}$时程曲线

    Figure  6.  Time-history curve of radial force ${\sigma _{\rm{ss}}}$

    图  7  应变公式值(εc)与数值计算值(εs(Lc, Ls))的对比

    Figure  7.  Comparison diagram between strain by fomula (εc) and that by simulation (εs(Lc, Ls))

    图  8  折算系数与试样实时厚度的关系图

    Figure  8.  relation diagram between conversion coefficient and real-time thickness of samples

    图  9  验证性模拟

    Figure  9.  Verification simulation

    图  10  试验砂样

    Figure  10.  Sand specimens tested

    图  11  砂样颗粒级配曲线

    Figure  11.  Grain size distribution

    图  12  试验设备

    Figure  12.  Test equipment

    图  13  试验原始波形

    Figure  13.  Test the original waveform

    图  14  砂样动态应力平衡

    Figure  14.  Dynamic stress equilibrium in the sand specimens

    图  15  含水率25%、30%钙质砂的应力应变

    Figure  15.  Stress and strain of calcareous sand with 25%, 30% water content

    表  1  试验工况表

    Table  1.   Summary of SHPB tests

    编号试验材料含水率/%砂质量/g装样厚度/mm干密度/(g∙cm−3)相对密实度/%气压/MPa
    G60-0.2-01钙质砂2513.9010.021.2958.730.2
    G60-0.2-022510.001.2960
    G60-0.2-0325 9.981.3061.31
    G60-0.2-043010.021.2958.73
    G60-0.2-053010.001.2960
    G60-0.2-063010.021.2958.73
    下载: 导出CSV
  • [1] 钱七虎, 王明洋. 三相介质饱和土自由场中爆炸波的传播规律 [J]. 爆炸与冲击, 1994, 14(2): 97–104.

    QIAN Q H, WANG M Y. Propagation of explosive wave in the free-field of three-phase saturated soil [J]. Explosion and Shock Waves, 1994, 14(2): 97–104.
    [2] SONG B, CHEN W, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    [3] 赵章泳, 邱艳宇, 紫民, 等. 含水率对非饱和钙质砂动力特性影响的试验研究 [J]. 爆炸与冲击, 2019, 40(2): 023102. DOI: 10.11883/bzycj-2019-0066.

    ZHAO Z Y, QIU Y Y, ZI Min, et al. Experimental study on dynamic compression of unsaturated calcareous sand [J]. Explosion and Shock Waves, 2019, 40(2): 023102. DOI: 10.11883/bzycj-2019-0066.
    [4] 魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.

    WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.
    [5] 魏久淇, 吕亚茹, 刘国权, 等. 钙质砂一维冲击响应及吸能特性试验 [J]. 岩土力学, 2019, 40(1): 191–198, 206. DOI: 10.16285/j.rsm.2017.1235.

    WEI J Q, LÜ Y R, LIU G Q. et al One-dimensional impact responses and energy absorption of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(1): 191–198, 206. DOI: 10.16285/j.rsm.2017.1235.
    [6] 文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究 [J]. 爆炸与冲击, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2018-0015.

    WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2018-0015.
    [7] 于潇, 陈力, 方秦. 珊瑚砂中应力波衰减规律的实验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.

    YU X, CHEN L, FANG Q. Experimental study on the attenuation of stress wave in coral sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.
    [8] BARR A D, CLARKE S D, TYAS A, et al. Effect of moisture content on high strain rate compressibility and particle breakage in loose sand [J]. Experimental Mechanics, 2018, 58(8): 1331–1334. DOI: 10.1007/s11340-018-0405-4.
    [9] ROSS C A, THOMPSON P Y, CHARLIE W A, et al. Transmission of pressure waves in partially saturated soils [J]. Experimental Mechanics, 1989, 29(1): 80–83. DOI: 10.1007/BF02327786.
    [10] MARTIN B E, KABIR Md E, CHEN W. Undrained high-pressure and high strain-rate response of dry sand under triaxial loading [J]. International Journal of Impact Engineering, 2013, 54: 51–63. DOI: 10.1016/j.ijimpeng.2012.10.008.
    [11] LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001.
    [12] OMIDVAR M, ISKANDER M, BLESS S. Stress-strain behavior of sand at high strain rates [J]. International Journal of Impact Engineering, 2012, 49: 192–213. DOI: 10.1016/j.ijimpeng.2012.03.004.
    [13] YAMAMURO J A, ABRANTES A E, LADE P V. Effect of strain rate on the stress-strain behavior of sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1169–1178. DOI: 10.1061/(ASCE)GT.1943-5606.0000542.
    [14] MARTIN B E, CHEN W N, SONG B, et al. Moisture effects on the high strain-rate behavior of sand [J]. Mechanics of Materials, 2009, 41(6): 786–798. DOI: 10.1016/j.mechmat.2009.01.014.
    [15] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. DOI: 10.1016/j.ijimpeng.2007.07.004.
    [16] BRAGOV A M, GRUSHEVSKY G M, LOMUNOV A K. Use of the Kolsky method for confined tests of soft soils [J]. Experimental Mechanics, 1996, 36(3): 237–242. DOI: 10.1007/BF02318013.
    [17] RAVI-CHANDAR K, Ma Z. Inelastic deformation in polymers under multiaxial compression [J]. Mechanics of Time-Dependent Materials, 2000, 4(4): 333–357. DOI: 10.1023/a:1026570826226.
    [18] FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. DOI: 10.1016/j.ijimpeng.2007.04.007.
    [19] 徐秉业. 应用弹塑性力学[M]. 北京: 清华大学出版社, 1995.
    [20] 国家质量技术监督局, 中华人民共和国建设部. GBT/50123 土工试验方法标准[S]. 北京: 中国计划出版社, 1999.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1503
  • HTML全文浏览量:  770
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-24
  • 修回日期:  2020-01-19
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回