A volume stress correction method for SHPB passiveconfined pressure of granular materials
-
摘要: 本文利用有限元仿真给出了一种修正方法,并用数值仿真和试验验证了该方法的可靠性。研究表明:散体材料SHPB被动围压试验中,试样厚度远小于厚壁圆筒长度时,端部效应会导致厚壁圆筒不均匀凸出变形,计算材料的体应力-应变关系不能将厚壁圆筒应力状态简化为平面应力问题;厚壁圆筒处于弹性状态下,通过厚壁圆筒理论计算出的径向力与真实径向力存在一定比例关系,在一定范围内,折算系数与试样实时厚度呈二次函数关系。Abstract: Aiming to overcome the disadvantages and demerits in the stress calculation in the passive confinement pressure SHPB tests of granular materials, a numerical modified approach is proposed in the present paper. The modified approach is also verified by finite element numerical simulation and experimental results. The results show that when the length of specimen is much shorter than the length of thick-walled hollow cylinder, the edge effects will lead to a non-uniform distribution of deformation along the length of hollow cylinder. Therefore, the configuration of thick-walled cannot be simplified as a plain stress problem when calculating the stress and deformation state of granular material. Due to the fact that the thick-walled hollow cylinder is elastic, the real radial stress in the hollow cylinder is proportional to the theoretical predictions. The proportionality coefficient has a quadratic function relation with the length of specimen.
-
Key words:
- granular materials /
- SHPB test /
- volume stress /
- conversion coefficient
-
表 1 试验工况表
Table 1. Summary of SHPB tests
编号 试验材料 含水率/% 砂质量/g 装样厚度/mm 干密度/(g∙cm−3) 相对密实度/% 气压/MPa G60-0.2-01 钙质砂 25 13.90 10.02 1.29 58.73 0.2 G60-0.2-02 25 10.00 1.29 60 G60-0.2-03 25 9.98 1.30 61.31 G60-0.2-04 30 10.02 1.29 58.73 G60-0.2-05 30 10.00 1.29 60 G60-0.2-06 30 10.02 1.29 58.73 -
[1] 钱七虎, 王明洋. 三相介质饱和土自由场中爆炸波的传播规律 [J]. 爆炸与冲击, 1994, 14(2): 97–104.QIAN Q H, WANG M Y. Propagation of explosive wave in the free-field of three-phase saturated soil [J]. Explosion and Shock Waves, 1994, 14(2): 97–104. [2] SONG B, CHEN W, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003. [3] 赵章泳, 邱艳宇, 紫民, 等. 含水率对非饱和钙质砂动力特性影响的试验研究 [J]. 爆炸与冲击, 2019, 40(2): 023102. DOI: 10.11883/bzycj-2019-0066.ZHAO Z Y, QIU Y Y, ZI Min, et al. Experimental study on dynamic compression of unsaturated calcareous sand [J]. Explosion and Shock Waves, 2019, 40(2): 023102. DOI: 10.11883/bzycj-2019-0066. [4] 魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002. [5] 魏久淇, 吕亚茹, 刘国权, 等. 钙质砂一维冲击响应及吸能特性试验 [J]. 岩土力学, 2019, 40(1): 191–198, 206. DOI: 10.16285/j.rsm.2017.1235.WEI J Q, LÜ Y R, LIU G Q. et al One-dimensional impact responses and energy absorption of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(1): 191–198, 206. DOI: 10.16285/j.rsm.2017.1235. [6] 文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究 [J]. 爆炸与冲击, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2018-0015.WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2018-0015. [7] 于潇, 陈力, 方秦. 珊瑚砂中应力波衰减规律的实验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.YU X, CHEN L, FANG Q. Experimental study on the attenuation of stress wave in coral sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147. [8] BARR A D, CLARKE S D, TYAS A, et al. Effect of moisture content on high strain rate compressibility and particle breakage in loose sand [J]. Experimental Mechanics, 2018, 58(8): 1331–1334. DOI: 10.1007/s11340-018-0405-4. [9] ROSS C A, THOMPSON P Y, CHARLIE W A, et al. Transmission of pressure waves in partially saturated soils [J]. Experimental Mechanics, 1989, 29(1): 80–83. DOI: 10.1007/BF02327786. [10] MARTIN B E, KABIR Md E, CHEN W. Undrained high-pressure and high strain-rate response of dry sand under triaxial loading [J]. International Journal of Impact Engineering, 2013, 54: 51–63. DOI: 10.1016/j.ijimpeng.2012.10.008. [11] LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001. [12] OMIDVAR M, ISKANDER M, BLESS S. Stress-strain behavior of sand at high strain rates [J]. International Journal of Impact Engineering, 2012, 49: 192–213. DOI: 10.1016/j.ijimpeng.2012.03.004. [13] YAMAMURO J A, ABRANTES A E, LADE P V. Effect of strain rate on the stress-strain behavior of sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1169–1178. DOI: 10.1061/(ASCE)GT.1943-5606.0000542. [14] MARTIN B E, CHEN W N, SONG B, et al. Moisture effects on the high strain-rate behavior of sand [J]. Mechanics of Materials, 2009, 41(6): 786–798. DOI: 10.1016/j.mechmat.2009.01.014. [15] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. DOI: 10.1016/j.ijimpeng.2007.07.004. [16] BRAGOV A M, GRUSHEVSKY G M, LOMUNOV A K. Use of the Kolsky method for confined tests of soft soils [J]. Experimental Mechanics, 1996, 36(3): 237–242. DOI: 10.1007/BF02318013. [17] RAVI-CHANDAR K, Ma Z. Inelastic deformation in polymers under multiaxial compression [J]. Mechanics of Time-Dependent Materials, 2000, 4(4): 333–357. DOI: 10.1023/a:1026570826226. [18] FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. DOI: 10.1016/j.ijimpeng.2007.04.007. [19] 徐秉业. 应用弹塑性力学[M]. 北京: 清华大学出版社, 1995. [20] 国家质量技术监督局, 中华人民共和国建设部. GBT/50123 土工试验方法标准[S]. 北京: 中国计划出版社, 1999. 期刊类型引用(7)
1. 刘平,苏雨萌,陈庞. 钢纤维增韧混凝土抗冲击性能研究综述. 混凝土. 2024(04): 47-51 . 百度学术
2. 余一松,李地元,蒋京泰,马金银,刘家明. 钢纤维混凝土动态力学特性及损伤规律研究. 工程科学学报. 2024(12): 2181-2190 . 百度学术
3. 杜闯,刘晓彤,李艳艳,宋帅,高启辉. 冲击爆炸荷载下UHPC动态本构模型研究现状. 混凝土. 2024(11): 51-54+60 . 百度学术
4. 谢开仲,刘振威,盖炳州,新赢,朱茂金. 不同岩性的机制砂混凝土本构关系及力学性能. 建筑科学与工程学报. 2021(01): 99-106 . 百度学术
5. 陈猛,王浩,齐迈,李艺,王述红,王二磊. 岩石–钢纤维混凝土复合层动态压缩 性能试验研究. 岩石力学与工程学报. 2020(06): 1222-1230 . 百度学术
6. 李艳,张文彬,刘泽军. PVA-ECC动态压缩性能研究. 建筑材料学报. 2020(03): 513-520 . 百度学术
7. 钟晨,叶中豹,王颖. 一种新形式非线性钢纤维混凝土本构关系. 硅酸盐通报. 2018(05): 1583-1588 . 百度学术
其他类型引用(14)
-
推荐阅读
高速冲击下混凝土动力学性质和动态温度研究
黄晨瑞 等, 爆炸与冲击, 2025
考虑微结构特征的陶瓷材料含损伤本构模型
刘慕皓 等, 爆炸与冲击, 2024
Zl114a铝合金本构关系与失效准则参数的确定
谭毅 等, 爆炸与冲击, 2024
基于3d细观模型的混凝土动态压缩行为分析
张湘茹 等, 爆炸与冲击, 2024
考虑itz厚度的钢纤维混凝土损伤破坏数值分析
万克诚 等, 西安工业大学学报, 2024
钢-混凝土组合框架结构倒塌动力响应特征及参数分析
彭修宁 等, 桂林理工大学学报, 2024
基于构型力断裂准则的骨料干涉作用分析
杜健欢 等, 西南交通大学学报, 2023
Fungal infection of insects: molecular insights and prospects
Hong, Song et al., TRENDS IN MICROBIOLOGY, 2024
Property assessment of high-performance concrete containing three types of fibers
INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS
Influence of longitudinal air gaps within charge structure on the detonation performance of explosives
GUO Wencan et al., EXPLOSION AND SHOCK WAVES, 2025