厚度梯度型箭形负泊松比蜂窝基座抗冲击性能

李谱 乐京霞 李晓彬 彭帅

李谱, 乐京霞, 李晓彬, 彭帅. 厚度梯度型箭形负泊松比蜂窝基座抗冲击性能[J]. 爆炸与冲击, 2020, 40(7): 071403. doi: 10.11883/bzycj-2019-0414
引用本文: 李谱, 乐京霞, 李晓彬, 彭帅. 厚度梯度型箭形负泊松比蜂窝基座抗冲击性能[J]. 爆炸与冲击, 2020, 40(7): 071403. doi: 10.11883/bzycj-2019-0414
LI Pu, YUE Jingxia, LI Xiaobin, PENG Shuai. Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio[J]. Explosion And Shock Waves, 2020, 40(7): 071403. doi: 10.11883/bzycj-2019-0414
Citation: LI Pu, YUE Jingxia, LI Xiaobin, PENG Shuai. Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio[J]. Explosion And Shock Waves, 2020, 40(7): 071403. doi: 10.11883/bzycj-2019-0414

厚度梯度型箭形负泊松比蜂窝基座抗冲击性能

doi: 10.11883/bzycj-2019-0414
基金项目: 国家自然科学基金(51979213)
详细信息
    作者简介:

    李 谱(1996- ),硕士研究生,maslipu@163.com

    通讯作者:

    李晓彬(1971- ),男,博士,教授,lxbmark@163.com

  • 中图分类号: O347.1; U663.7

Impact resistance of thickness-graded arrow-shaped honeycomb pedestals with negative Poisson’s ratio

  • 摘要: 设计了一种箭形负泊松比的蜂窝基座结构,推导了其胞元结构的力学性能解析公式,并利用有限元方法研究了具有厚度梯度箭形负泊松比蜂窝材料的抗冲击性能。基于功能梯度材料,其基体呈连续梯度变化的概念,以胞元壁厚为自变量,设计了顺厚度梯度、逆厚度梯度型和均匀厚度的蜂窝层,并建立基座模型。在基座质量不变的前提下具体讨论了蜂窝胞元凹角及厚度梯度的不同设置情况对基座抗冲击性能的影响。结果表明,相同梯度设置情况下,胞角的变化会引起蜂窝结构等效弹性模量的变化,进而改变基座的抗冲击性能,而将胞壁厚度较小的蜂窝层放置于迎冲端时,基座整体的应力水平明显降低;将壁厚较大的蜂窝层放置于迎冲端时,基座面板的输出冲击环境能够有效地得到控制。
  • 图  1  箭形负泊松比胞元

    Figure  1.  An arrow-shaped cell with negative Poisson’s ratio

    图  2  蜂窝胞元有限元模型

    Figure  2.  The finite element model for honeycomb cells

    图  3  有限元与解析公式计算结果的对比

    Figure  3.  Comparison between the results by finite element simulation and analytical formula calculation

    图  4  厚度梯度型负泊松比蜂窝基座结构

    Figure  4.  The thickness-graded honeycomb pedestal with negative Poisson’s ratio

    图  5  基座有限元模型

    Figure  5.  The finite element model for the pedestal

    图  6  输入加速度时历曲线

    Figure  6.  Input acceleration-time curve

    图  7  有限元模型及实验基座结构

    Figure  7.  The finite element model and the corresponding pedestal structure used in test

    图  8  加速度时历曲线

    Figure  8.  Acceleration-time curves

    图  9  $ {\theta }_{1} $为65°的均匀厚度蜂窝结构von Mises应力云图

    Figure  9.  Von-Mises stress distribution in the layered honeycomb structure with uniform thickness for θ1 = 65°

    图  10  胞角$ {\theta }_{1} $为65°的蜂窝结构各分层内出现的最大von Mises应力

    Figure  10.  The maximum von-Mises stress in the every layer of the honeycomb structure with θ1 = 65°

    图  11  胞角$ {\theta }_{1} $为60°的蜂窝结构各分层内出现的最大von Mises应力

    Figure  11.  The maximum von-Mises stress in the every layer of the honeycomb structure with θ1 = 60°

    图  12  胞角$ {\theta }_{1} $为55°的蜂窝结构各分层内出现的最大von Mises应力

    Figure  12.  The maximum von-Mises stress in the every layer of the honeycomb structure with θ1 = 55°

    图  13  各工况下基座的最大von Mises应力

    Figure  13.  The maximum von Mises stresses in the pedestals under various working conditions

    图  14  面板测点布置

    Figure  14.  Layout of measuring points at the panel

    图  15  不同工况下基座面板测点处的加速度时历曲线

    Figure  15.  Acceleration-time curves at the measuring points of the base panel under different working condition

    图  16  不同工况下蜂窝基座面板测点处的冲击谱

    Figure  16.  Impact spectra at the measuring points of the honeycomb pedestal panels under different working conditions

    表  1  厚度梯度基座工况设置

    Table  1.   Condition settings for thickness gradient pedestals

    胞角$ {\theta }_{1} $/(°)工况层1厚度/mm层2厚度/mm层3厚度/mm
    55均匀厚度333
    顺厚度梯度234
    逆厚度梯度432
    60均匀厚度333
    顺厚度梯度234
    逆厚度梯度432
    65均匀厚度333
    顺厚度梯度234
    逆厚度梯度432
    下载: 导出CSV
  • [1] 王军, 卢立新. 蜂窝纸板面内平台应力表征 [J]. 工程力学, 2012, 29(8): 354–359. DOI: 10.6052/j.issn.1000-4750.2010.11.0816.

    WANG J, LU L X. Characterization of in-plane platean stress for honeycomb paperboard [J]. Engineering Mechanics, 2012, 29(8): 354–359. DOI: 10.6052/j.issn.1000-4750.2010.11.0816.
    [2] 张伟. 三维负泊松比多胞结构的轴向压缩性能研究[D]. 大连: 大连理工大学, 2015.
    [3] CHOI J B, LAKES R S. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio [J]. International Journal of Mechanical Sciences, 1995, 37(1): 51–59. DOI: 10.1016/0020-7403(94)00047-n.
    [4] LI Y, CORMIER D, WEST H, et al. Non-stochastic Ti-6Al-4V foam structures with negative Poisson’s ratio [J]. Materials Science and Engineering: A, 2012, 558: 579–585. DOI: 10.1016/j.msea.2012.08.053.
    [5] SCHULTZ J, GRIESE D, SHANKAR P, et al. Optimization of honeycomb cellular meso-structures for high speed impact energy absorption [C] // Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Washington: American Society of Mechanical Engineers, 2014: 955-965. DOI: 10.1115/DETC2011-48000.
    [6] 杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.

    YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
    [7] ZHANG X C, AN L Q, DING H M, et al. Influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio [J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26–55. DOI: 10.1177/1099636214554180.
    [8] KOIZUMI M. FGM activities in Japan [J]. Composites Part B: Engineering, 1997, 28(1−2): 1–4.
    [9] 何强, 马大为, 张震东, 等. 功能梯度蜂窝材料的面内冲击性能研究 [J]. 工程力学, 2016, 33(2): 172–178. DOI: 10.6052/j.issn.1000-4750.2014.05.0392.

    HE Q, MA D W, ZHANG Z D, et al. Research on the in-plane dynamic crushing of functionally graded honeycombs [J]. Engineering Mechanics, 2016, 33(2): 172–178. DOI: 10.6052/j.issn.1000-4750.2014.05.0392.
    [10] 吴鹤翔, 刘颖. 梯度分布对密度梯度金属空心球阵列动力学性能的影响 [J]. 工程力学, 2013, 30(1): 425–431. DOI: 10.6052/j.issn.1000-4750.2011.06.0335.

    WU H X, LIU Y. The influence of gradient profile on the dynamic properties of density graded metal hollow sphere arrays [J]. Engineering Mechanics, 2013, 30(1): 425–431. DOI: 10.6052/j.issn.1000-4750.2011.06.0335.
    [11] AJDARI A, CANAVAN P, NAYEB-HASHEMI H, et al. Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation [J]. Materials Science and Engineering: A, 2009, 499(1−2): 434–439. DOI: 10.1016/j.msea.2008.08.040.
    [12] GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4−5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
    [13] LIANG C, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1−2): 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [14] 李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.

    LI Y, WANG Y, WU W G, et al. Dynamic mechanical properties and constitutive relations of marine 907A steel [J]. Journal of Harbin Engineering University, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.
    [15] 王军. 浮动冲击平台冲击动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [16] German Federal Office for Military Technology and Procurement. Shock resistance specification for bundeswehr ships: BV043[S]. 1985.
    [17] 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟 [J]. 爆炸与冲击, 2014, 34(2): 181–187. DOI: 10.11883/1001-1455(2014)02-0181-07.

    LU Z X, LI K. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs [J]. Explosion and Shock Waves, 2014, 34(2): 181–187. DOI: 10.11883/1001-1455(2014)02-0181-07.
    [18] 王军, 姚熊亮, 杨棣. 浮动冲击平台冲击环境对设备响应的影响 [J]. 爆炸与冲击, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.

    WANG J, YAO X L, YANG D. Impact analysis of shock environment from floating shock platform on equipment response [J]. Explosion and Shock Waves, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  4940
  • HTML全文浏览量:  1733
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2020-05-25
  • 网络出版日期:  2020-06-25
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回