高地应力岩体多孔爆破破岩机制

杨建华 孙文彬 姚池 张小波

杨建华, 孙文彬, 姚池, 张小波. 高地应力岩体多孔爆破破岩机制[J]. 爆炸与冲击, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427
引用本文: 杨建华, 孙文彬, 姚池, 张小波. 高地应力岩体多孔爆破破岩机制[J]. 爆炸与冲击, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427
YANG Jianhua, SUN Wenbin, YAO Chi, ZHANG Xiaobo. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses[J]. Explosion And Shock Waves, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427
Citation: YANG Jianhua, SUN Wenbin, YAO Chi, ZHANG Xiaobo. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses[J]. Explosion And Shock Waves, 2020, 40(7): 075202. doi: 10.11883/bzycj-2019-0427

高地应力岩体多孔爆破破岩机制

doi: 10.11883/bzycj-2019-0427
基金项目: 国家自然科学基金(51969015,U1765207);江西省自然科学基金(20192ACB21019,20181BAB206047)
详细信息
    作者简介:

    杨建华(1986- ),男,博士,副教授,yangjianhua86@ncu.edu.cn

    通讯作者:

    姚 池(1986- ),男,博士,副教授,chi.yao@ncu.edu.cn

  • 中图分类号: O382.2

Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses

  • 摘要: 深部岩体爆破破岩是爆炸荷载与高地应力共同作用的结果。基于一些简化假设,建立了一个高地应力岩体双孔爆破计算模型,采用光滑粒子流体力学-有限元方法耦合数值模拟方法,研究了高地应力作用下炮孔间裂纹的传播及贯通过程,分析了炮孔周围应力场动态演化过程与分布特征。研究结果表明:爆破引起的岩体开裂主要是环向动拉应力所致,地应力对岩体的压缩降低了炮孔周围环向动拉应力、缩短了环向动拉应力的作用时间,因而对爆炸致裂起抑制作用;静水地应力条件下多孔爆破时,垂直于炮孔连线方向传播的爆生裂纹更易受到地应力的抑制;对于高地应力岩体爆破,炮孔间的裂纹扩展长度随地应力水平的提高而减小,裂纹主要沿最大主应力方向扩展,因此沿最大主应力方向布置炮孔、缩短炮孔间距有利于炮孔间裂纹的连接贯通,形成良好的爆破开挖面。
  • 图  1  双孔爆破分析模型

    Figure  1.  The analysis model for double-hole blasting

    图  2  SPH-FEM耦合示意图

    Figure  2.  Illustration of the coupled SPH-FEM algorithm

    图  3  数值计算模型

    Figure  3.  The numerical model used in the calculations

    图  4  爆炸荷载压力时程曲线

    Figure  4.  Blasting pressure varying with time

    图  5  本文数值模拟与Banadaki等[14]的试验结果的对比

    Figure  5.  Comparison between the numerical simulation and the experimental result by Banadaki, et al[14]

    图  6  不同静水地应力水平下的岩石爆破开裂过程

    Figure  6.  Blast-induced rock fracture processes under different hydrostatic in-situ stress levels

    图  7  不同静水地应力水平下裂纹扩展长度随时间的变化

    Figure  7.  Variation of crack length with time under different hydrostatic in-situ stress levels

    图  8  地应力σx=σy=80 MPa条件下炮孔间裂纹贯通及相应的爆炸载荷压力随时间的变化

    Figure  8.  The crack connection between the blastholes under σx=σy=80 MPa and the corresponding blasting pressure varying with time

    图  9  不同非静水地应力水平下的岩石爆破开裂过程(λ=3)

    Figure  9.  Blast-induced rock fracture processes under different non-hydrostatic in-situ stress levels for λ=3

    图  10  不同侧压力因数下的爆生裂纹分布(σy=20 MPa)

    Figure  10.  Distributions of blast-induced cracks under different lateral pressure coefficients for σy=20 MPa

    图  11  炮孔沿最小主应力方向布置时的爆生裂纹分布(σx=3σy=60 MPa)

    Figure  11.  Distribution of blast-induced cracks for the blasthole arrangement along the minimum principal stress direction for σx=3σy=60 MPa

    图  12  应力观测点的布置

    Figure  12.  Arrangement of the stress observation points

    图  13  单孔爆破时的环向应力变化曲线(σx=σy=0 MPa)

    Figure  13.  Circumferential stress histories under single-hole blasting for σx=σy=0 MPa

    图  14  双孔爆破时的环向应力变化曲线(σx=σy=0 MPa)

    Figure  14.  Circumferential stress histories under double-hole blasting for σx=σy=0 MPa

    图  15  不同静水地应力水平下炮孔周围环向应力随时间的变化曲线

    Figure  15.  Circumferential stress histories around the blasthole under different hydrostatic in-situ stress levels

    图  16  不同非静水地应力条件下炮孔周围环向应力随时间的变化曲线

    Figure  16.  Circumferential stress histories around the blasthole under different non-hydrostatic in-situ stress levels

    表  1  地应力加载工况

    Table  1.   In-situ stress conditions used in numerical calculations

    应力场工况σx/MPaσy/MPaλ=σx/σy
    无初始地应力场 1 0 0
    静水地应力场 2 10101
    3 20201
    4 40401
    5 80801
    非静水地应力场 6 40202
    7 30103
    8 60203
    9120403
    10 80204
    下载: 导出CSV

    表  2  岩石材料物理力学参数

    Table  2.   Physical and mechanical parameters of the rock material

    ρ/(g·cm-3)K/GPaG/GPaσHEL/GPaANCBMD1D2
    2.6625.721.94.50.760.620.0050.250.620.0050.7
    下载: 导出CSV
  • [1] 谢和平. 深部岩体力学与开采理论”研究构想与预期成果展望 [J]. 工程科学与技术, 2017, 49(2): 1–16. DOI: 10.15961/j.jsuese.201700025.

    XIE H P. Research framework and anticipated results of deep rock mechanics and mining theory [J]. Advanced Engineering Sciences, 2017, 49(2): 1–16. DOI: 10.15961/j.jsuese.201700025.
    [2] CAI M F, BROWN E T. Challenges in the mining and utilization of deep mineral resources [J]. Engineering, 2017, 3(4): 432–433. DOI: 10.1016/J.ENG.2017.04.027.
    [3] MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
    [4] 肖正学, 张志呈, 李端明. 初始应力场对爆破效果的影响 [J]. 煤炭学报, 1996, 21(5): 497–501. DOI: 10.15961/j.jsuese.201700025.

    XIAO Z X, ZHANG Z C, LI D M. The influence of initial stress field on blasting [J]. Journal of China Coal Society, 1996, 21(5): 497–501. DOI: 10.15961/j.jsuese.201700025.
    [5] 赵宝友, 王海东. 深孔爆破技术在高地应力低透气性高瓦斯煤层增透防突中的适用性 [J]. 爆炸与冲击, 2014, 34(2): 145–152. DOI: 10.11883/1001-1455(2014)02-0145-08.

    ZHAO B Y, WANG H D. Feasibility of deep-hole blasting technology for outburst prevention and permeability enhancement in high-gas-content coal seams with low-permeability subjected to high geo-stresses [J]. Explosion and Shock Waves, 2014, 34(2): 145–152. DOI: 10.11883/1001-1455(2014)02-0145-08.
    [6] 魏晨慧, 朱万成, 白羽, 等. 不同地应力条件下切缝药包爆破的数值模拟 [J]. 爆炸与冲击, 2016, 36(2): 161–169. DOI: 10.11883/1001-1455(2016)02-0161-09.

    WEI C H, ZHU W C, BAI Y, et al. Numerical simulation on cutting seam cartridge blasting under different in-situ stress conditions [J]. Explosion and Shock Waves, 2016, 36(2): 161–169. DOI: 10.11883/1001-1455(2016)02-0161-09.
    [7] YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
    [8] HE C L, YANG J. Experimental and numerical investigations of dynamic failure process in rock under blast loading [J]. Tunnelling and Underground Space Technology, 2019, 83: 552–564. DOI: 10.1016/j.tust.2018.08.047.
    [9] ZHAO J J, ZHANG Y, RANJITH P G. Numerical simulation of blasting-induced fracture expansion in coal masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 28–39. DOI: 10.1016/j.ijrmms.2017.10.015.
    [10] 李洪伟, 雷战, 江向阳, 等. 不同炮孔间距对岩石爆炸裂纹扩展影响的数值分析 [J]. 高压物理学报, 2019, 33(4): 044103. DOI: 10.11858/gywlxb.20180683.

    LI H W, LEI Z, JIANG X Y, et al. Numerical analysis of impact of shot hole spacing on crack growth in rock [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044103. DOI: 10.11858/gywlxb.20180683.
    [11] 徐涛龙, 梁博, 文霞, 等. 天然气泄漏爆炸冲击同沟并行邻管的模拟方法 [J]. 工程力学, 2019, 36(S1): 329–338. DOI: 10.6052/j.issn.1000-4750.2018.05.S061.

    XU T L, LIANG B, WEN X, et al. Explosion impact simulation methods for parallel pipeline laying in the same ditch after gas leakage [J]. Engineering Mechanics, 2019, 36(S1): 329–338. DOI: 10.6052/j.issn.1000-4750.2018.05.S061.
    [12] 王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.

    WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
    [13] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [14] BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40−41: 16–25. DOI: 10.1016/j.ijimpeng.2011.08.010.
    [15] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products [R]. Livermore: Lawrence Radiation Laboratory, 1968.
    [16] GHAREHDASH S, BARZEGAR M, PALYMSKIY I B, et al. Blast induced fracture modelling using smoothed particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 135: 103235. DOI: 10.1016/j.ijimpeng.2019.02.001.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  4609
  • HTML全文浏览量:  2008
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 修回日期:  2020-04-20
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回