• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

TNT空爆载荷下WELDOX 700E钢变形行为研究

闫永明 尉文超 何肖飞 孙挺 时捷

郭学永, 解立峰, 惠君明. 燃料爆炸抛撒过程中射流量的估算[J]. 爆炸与冲击, 2005, 25(2): 132-136. doi: 10.11883/1001-1455(2005)02-0132-05
引用本文: 闫永明, 尉文超, 何肖飞, 孙挺, 时捷. TNT空爆载荷下WELDOX 700E钢变形行为研究[J]. 爆炸与冲击, 2020, 40(7): 073102. doi: 10.11883/bzycj-2019-0430
GUO Xue-yong, XIE Li-feng, HUI Jun-ming. Experimental study of jet formation during explosive dispensing of fuel[J]. Explosion And Shock Waves, 2005, 25(2): 132-136. doi: 10.11883/1001-1455(2005)02-0132-05
Citation: YAN Yongming, YU Wenchao, HE Xiaofei, SUN Ting, SHI Jie. Deformation behavior of WELDOX 700E steel subjected to TNT air-blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 073102. doi: 10.11883/bzycj-2019-0430

TNT空爆载荷下WELDOX 700E钢变形行为研究

doi: 10.11883/bzycj-2019-0430
详细信息
    作者简介:

    闫永明(1986- ),男,博士,高级工程师,yanyongming@nercast.com

  • 中图分类号: O347.3

Deformation behavior of WELDOX 700E steel subjected to TNT air-blast loading

  • 摘要: 以WELDOX 700E钢为研究对象,研究了8 mm钢在6 kg球形TNT空爆载荷、12 mm钢在10 kg球形TNT空爆载荷下的抗爆轰变形行为,结合ABAQUS模拟计算软件建立了WELDOX 700E钢抗爆轰变形模拟计算模型。结果表明:材料强度是影响WELDOX 700E钢抗爆轰变形行为的关键因素之一,高强度WELDOX 700E钢在球形TNT空爆载荷条件下呈现均匀的拱形变形。在6 kg球形TNT空爆载荷下,8 mm WELDOX 700E钢板中点的最大动态位移为144 mm,永久挠度为124 mm,回弹为21 mm;在10 kg球形TNT空爆载荷下,12 mm WELDOX 700E钢板中点的最大动态位移为166 mm,永久挠度为143 mm,回弹为23 mm。在不考虑实验工装整体偏移的条件下,球形TNT空爆载荷下钢的抗爆轰变形模拟计算结果可准确反映WELDOX 700E钢的抗爆轰变形行为。WELDOX 700E钢在抗爆轰形变过程中存在显著的厚度减薄现象并伴随一定的应变硬化行为,应变硬化行为主要为WELDOX 700E钢马氏体晶粒内部位错増殖的表现,8 mm和12 mm WELDOX 700E钢中心区域的位错密度较边部分别增加80.31%和151.76%。
  • 图  1  WELDOX 700E钢爆炸实验装置结构图

    Figure  1.  Experimental setup of WELDOX 700E steel

    图  2  WELDOX 700E钢爆炸实验高速摄像

    Figure  2.  Snapshots of WELDOX 700E steel subjected to explosion taken by high-speed camera at different times

    图  3  WELDOX 700E钢抗爆轰变形情况

    Figure  3.  Anti-detonation deformation of WELDOX 700E steel

    图  4  WELDOX 700E钢爆轰变形模拟计算结果

    Figure  4.  Simulation of detonation deformation of WELDOX 700E steel

    图  5  爆轰载荷下WELDOX 700E钢中点的位移曲线

    Figure  5.  Midpoint displacement of WELDOX 700E steel subjected to blast shock wave

    图  6  WELDOX 700E钢抗爆轰球形形变曲线

    Figure  6.  Deformation curves of WELDOX 700E steel subjected to blast shock wave

    图  7  WELDOX 700E钢抗爆轰厚度变化曲线

    Figure  7.  Thickness variation of WELDOX 700E steel subjected to blast shock wave

    图  8  WELDOX 700E钢在爆轰变形后不同区域金相组织

    Figure  8.  Microstructure of WELDOX 700E steel subjected to blast shock wave

    图  9  WELDOX 700E钢在爆轰变形后不同区域的位错密度

    Figure  9.  Dislocation density of WELDOX 700E steel subjected to blast shock wave

  • [1] RAHMAAN T, BARDELCIK A, IMBERT J, et al. Effect of strain rate on flow stress and anisotropy of DP600, TRIP780, and AA5182-O sheet metal alloys [J]. Impact Engineering, 2016, 88(2): 72–90. DOI: 10.1016/j.ijimpeng.2015.09.006.
    [2] 韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化 [J]. 兵工学报, 2010, 11(31): 1468–1474. DOI: 10.3184/030823410X12680741110954.

    HAN S H, LV Z H. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 11(31): 1468–1474. DOI: 10.3184/030823410X12680741110954.
    [3] 陈学军, 杨学文, 张永珍. 地雷爆炸作用下装甲车辆底部防护结构优化仿真研究 [J]. 兵工学报, 2014, 2(35): 353–357. DOI: CNKI: SUN: BIGO. 0. 2014-S2-066.

    CHEN X J, YANG X W, ZHANG Y Z. A simulation study of structural optimization of armor vehicle bottomprotection under the landmine explosion [J]. Acta Armamentarii, 2014, 2(35): 353–357. DOI: CNKI: SUN: BIGO. 0. 2014-S2-066.
    [4] 张钱城, 郝方楠, 李裕春,等. 爆炸冲击载荷作用下车辆和人员的损伤与防护 [J]. 力学与实践, 2014, 5(36): 527–539. DOI: 10.6052/1000-0879-13-539.

    ZHANG Q C, HAO F N, LI Y C, et al. Research progress in the injury and protection on vehicle and passengers under explosive shock loading [J]. Mechanics in Engineering, 2014, 5(36): 527–539. DOI: 10.6052/1000-0879-13-539.
    [5] CHUNG K Y S, LANGDON G S, NURICK G N, et al. Response of V-shape plates to localised blast load: experiments and numerical simulation [J]. Impact Engineering, 2012, 2(46): 97–109. DOI: 10.1016/j.ijimpeng.2012.02.007.
    [6] BORVIK T, OLOVSSON L, HANSSEN A G, et al. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates [J]. Mechanics and Physics of Solids, 2011, 3(59): 940–958. DOI: 10.1016/j.jmps.2011.03.004.
    [7] JUHO P, HAE-JIN C. Experiments and numerical analyses of HB400 and aluminum foam sandwich structure under landmine explosion [J]. Composite Structures, 2015, 11(134): 726–739. DOI: 10.1016/j.compstruct.2015.08.133.
    [8] MENKES S B, OPAT H J. Broken beams-tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. DOI: 10.1007/BF02322734.
    [9] TEELING S, NURICK G N. The deformation and tearing of thin circular paltes subjected to impulsive loads [J]. Impact Engineering, 1991, 11(1): 77–91. DOI: 10.1016/0734-743X(91)90032-B.
    [10] BRODE H L. Blast wave from a spherical charge [J]. Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
    [11] SEUNG H K, YOON S C, YONG J C. Parametric analyese of major nuclear components and reinforced concrete structures under FCI-induced explosive condition [J]. Nuclear Engineering and Design, 2017, 3(322): 148–158. DOI: 10.1016/j.nucengdes.2017.06.029.
    [12] JACON N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007, 3(29): 2723–2736. DOI: 10.1016/j.engstruct.2007.01.021.
    [13] LING Z, NOBUAKI S, TAKAHITO O. Real time correlation between flow stress and dislocation density in steel during deformation [J]. Materials Science & Engineering A, 2014, 4(611): 188–193. DOI: 10.1016/j.msea.2014.05.073.
    [14] AMRITA K, DAVID P F. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel [J]. Materials Science & Engineering A, 2016, 5(667): 435–443. DOI: 10.1016/j.msea.2016.05.022.
  • 期刊类型引用(12)

    1. 许平,舒安麒,霍钰嘉,阳程星,郭维年,姚曙光. 高速列车金属/碳纤维混合摩擦吸能结构耐撞性设计及优化. 中南大学学报(自然科学版). 2025(01): 358-369 . 百度学术
    2. 刘兴华,刘敬喜,崔濛,柴威. 极地船舶新型舷侧结构抗碰撞研究. 舰船科学技术. 2025(03): 39-43 . 百度学术
    3. 许平,杨雨晖,阳程星,邢杰,姚曙光,邹帆. 过盈配合工况下收缩管吸能特性分析及结构参数优化. 铁道科学与工程学报. 2024(04): 1677-1689 . 百度学术
    4. 邢攸冬,王立虎,卢世庆,杨思一. 正交梯形蜂窝铝抗冲击力学性能及核装备防护应用仿真模拟. 振动与冲击. 2023(16): 166-174 . 百度学术
    5. 葛宇静,白春玉,惠旭龙,舒挽. 材料中应变率力学性能测试数据处理与表征方法. 测控技术. 2022(05): 58-65 . 百度学术
    6. 康煌,王舒,闫文敏,崔海林,郭香华,张庆明. 轮胎破片冲击机身的非等比例相似模型研究. 爆炸与冲击. 2022(07): 84-96 . 本站查看
    7. 王悦鑫,何欢,吴添,惠旭龙. 基于损失函数的缩比模型冲击响应预报结果修正方法. 航空学报. 2022(08): 469-480 . 百度学术
    8. 孙宇超,张志贵,陈星明,潘峰. 某矿山矿石爆破相似试验模型强度力学测试分析. 中国矿业. 2020(01): 129-132+136 . 百度学术
    9. 朱明新,周海龙,尚凯,杨兴园,周鹏,张亚岐. 重力加载对厚板件热成形性能的影响. 塑性工程学报. 2020(01): 46-51 . 百度学术
    10. 王帅,徐绯,代震,刘小川,李肖成,杨磊峰,惠旭龙. 结构冲击畸变问题的直接相似方法研究. 力学学报. 2020(03): 774-786 . 百度学术
    11. 白春玉,葛宇静,惠旭龙,刘小川,杨强,张宇. 金属材料的中低应变率动态拉伸试验方法研究与应用. 航空科学技术. 2020(12): 33-41 . 百度学术
    12. 高海莹,刘中宪,杨烨凯,吴成清,耿佳莹. 泡沫铝防护钢筋混凝土板的抗爆性能. 爆炸与冲击. 2019(02): 30-41 . 本站查看

    其他类型引用(17)

  • 加载中
图(9)
计量
  • 文章访问数:  3119
  • HTML全文浏览量:  1408
  • PDF下载量:  82
  • 被引次数: 29
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-02-13
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回