升温速率与流变特性对B炸药慢烤响应的影响

周捷 智小琦 王帅 范兴华

周捷, 智小琦, 王帅, 范兴华. 升温速率与流变特性对B炸药慢烤响应的影响[J]. 爆炸与冲击, 2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431
引用本文: 周捷, 智小琦, 王帅, 范兴华. 升温速率与流变特性对B炸药慢烤响应的影响[J]. 爆炸与冲击, 2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431
ZHOU Jie, ZHI Xiaoqi, WANG Shuai, FAN Xinghua. Influences of the heating rate and rheological properties on slow cook-off response of composition B[J]. Explosion And Shock Waves, 2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431
Citation: ZHOU Jie, ZHI Xiaoqi, WANG Shuai, FAN Xinghua. Influences of the heating rate and rheological properties on slow cook-off response of composition B[J]. Explosion And Shock Waves, 2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431

升温速率与流变特性对B炸药慢烤响应的影响

doi: 10.11883/bzycj-2019-0431
详细信息
    作者简介:

    周 捷(1995- ),男,硕士研究生,zhoujiepla@foxmail.com

    通讯作者:

    智小琦(1965- ),女,博士,教授,zxq4060@sina.com

  • 中图分类号: O381; TJ55

Influences of the heating rate and rheological properties on slow cook-off response of composition B

  • 摘要: 为探究慢速烤燃过程中不同升温速率下B炸药流变特性的尺寸效应对相变后内部温度场的分布特征与点火位置的影响,设计了$\varnothing $76 mm与$\varnothing $130 mm两种尺寸的烤燃弹。通过慢烤试验分别获得了1 ℃/min与3.3 ℃/h两种升温速率下,各烤燃弹内部监测点的温度变化曲线,结合数值模拟进一步分析了各工况下烤燃弹内部温度场的变化特点。研究结果表明:在升温速率为1 ℃/min时,两种尺寸的烤燃弹在炸药还未完全相变前就已发生响应,对流的存在导致炸药顶部的熔化速率明显高于底部,B炸药流变特性的尺寸效应不明显;当升温速率为3.3 ℃/h时,相变完成后,尺寸偏小的烤燃弹内部流场强度低,温度场变化十分缓慢,而尺寸偏大的烤燃弹内部流场强度较大,温度场很快体现出典型的液相温度场分布特征,B炸药的流变特性具有明显的尺寸效应;无论升温速率的快慢与尺寸的大小,炸药发生相变后温度最高点、自热反应区域与最终响应区域都出现在药柱顶部附近。
  • 图  1  烤燃弹与加热套筒

    Figure  1.  Slow cook off bombs and heating barrels

    图  2  测点位置分布示意图

    Figure  2.  Measuring points locations

    图  3  烤燃试验装置示意图

    Figure  3.  Schematic setup of slow cook off test

    图  4  试验布置与试验结果

    Figure  4.  Test arrangement and result

    图  5  $\varnothing $76 mm烤燃弹在不同升温速率下实测各点温度变化曲线

    Figure  5.  Measured temperature curves of $\varnothing $76 mm shell sat different heating rates

    图  6  $\varnothing $130 mm烤燃弹在两种升温速率下实测各点温度变化曲线

    Figure  6.  Measured temperature curves of $\varnothing $130 mm shells at different heating rates

    图  7  Bingham流体屈服过程

    Figure  7.  Yield process of Bingham fluid

    图  8  $\varnothing $76 mm烤燃弹在不同升温速率下模拟各点温度与平均流速变化曲线

    Figure  8.  Simulated average velocity and temperature curves at different points of $\varnothing $76 mm shells under different heating rates

    图  9  $\varnothing $130 mm烤燃弹在不同升温速率下模拟各点温度与平均流速变化曲线

    Figure  9.  Simulated average velocity and temperature curves at different points of $\varnothing $130 mm shells under different heating rates

    图  10  1 ℃/min升温速率下$\varnothing $76 mm烤燃弹内部温度场变化过程

    Figure  10.  Changes of temperature field inside the $\varnothing $76 mm shell at the heating rate of 1 ℃/min

    图  11  3.3 ℃/h升温速率下$\varnothing $76mm烤燃弹内部温度场变化过程

    Figure  11.  Changes of temperature field inside the $\varnothing $76 mm shell at the heating rate of 3.3 ℃/h

    图  12  1 ℃/min升温速率下$\varnothing $130 mm烤燃弹内部温度场变化过程

    Figure  12.  Changes of temperature field inside the $\varnothing $130 mm shell at the heating rate of 1 ℃/min

    图  13  3.3 ℃/h升温速率下$\varnothing $130 mm烤燃弹内部温度场变化过程

    Figure  13.  Changes of temperature field insidethe $\varnothing $130 mm shell at the heating rate of 3.3 ℃/h

    表  1  烤燃弹具体尺寸

    Table  1.   Size of the cook off bombs

    方案编号弹体直径/mm弹体长度/mm弹体壁厚/mm药柱直径/mm药柱长度/mm测点间距/mm
    11304301510040050
    2 762557.5 6124030
    下载: 导出CSV

    表  2  响应时刻各测点温度

    Table  2.   Temperature of each measuring points when ignition

    弹径/mm升温速率温度/℃
    外壁测点1测点2测点3测点4测点5测点6测点7
    761 ℃/min194.2127.4 82.9 78.7 78.3 78.2 78.3(失效)
    3.3 ℃/h171.8227.6205.2201.4193.4(失效)190.2184.1
    1301 ℃/min193.8 79.3 66.2 65.3 64.9 64.5 64.3 64.5
    3.3 ℃/h175.1191.1187.3185.4182.8179.5176.7175.3
    下载: 导出CSV

    表  3  B炸药与壳体的物性参数

    Table  3.   Physical parameters for Comp B and shell

    材料ρ/(kg·m−3)C/(J·kg−1)k/(W·m−1·K−1)Qm/(J·kg−1)Ts/℃Tl/℃
    B炸药$\left\{ {\begin{array}{*{20}{l}} {1\;690}&{(T {\simfont\text{≤}} {T_s})} \\ {1\;690 - 0.675\left( {T - {T_{\rm{s}}}} \right)}&{(T {\simfont\text{>}} {T_{\rm{s}}})} \end{array}} \right.$1 126$\left\{ {\begin{array}{*{20}{l}} {0.17}&{(T {\simfont\text{<}} {T_{\rm{s}}})} \\ {0.17 - 0.025\left( {T - {T_{\rm{m}}}} \right)}&{({T_{\rm{s}}} {\simfont\text{≤}} T {\simfont\text{≤}} {T_{\rm{l}}})} \\ {0.15}&{(T {\simfont\text{>}} {T_{\rm{l}}})} \end{array}} \right.$128 0008082
    45钢785047514
     注:ρ为密度;C为比热容;k为导热系数;Qm为熔化热;Ts为相变起始温度;T1为相变结束温度。
    下载: 导出CSV

    表  4  B炸药化学反应动力学参数

    Table  4.   Chemical kinetic parameters for Comp B

    Ea/(J·mol−1)Q/(J·kg−1)A
    22 0005.82×1062.01×1018
    下载: 导出CSV

    表  5  试验与数值模拟响应温度的比较

    Table  5.   Comparison of response temperatures from experiment and simulation

    弹体直径/mm升温速率响应温度/℃误差/%
    试验数值模拟
    761 ℃/min194.2195.00.4
    3.3 ℃/h171.8172.40.3
    1301 ℃/min193.8193.7−0.05
    3.3 ℃/h175.1174.6−0.3
    下载: 导出CSV
  • [1] CUDZIłO S, TRZCIńSKI W A. Melt cast high explosives [J]. Bulletin of the Military University of Technology, 2014, 63(4): 43–55. DOI: 10.5604/12345865.1131330.
    [2] KRAWIETZ T R, McKENNEY R L, ORTIZ R J. Characterization of the unconfined slow cook-off response of nitramines and nitraminecomposites with TNT [C] // 12th International Detonation Symposium. San Diego, 2002: 79−86.
    [3] 周捷, 智小琦, 王帅, 等. B炸药慢速烤燃过程的流变特性 [J]. 爆炸与冲击, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.

    ZHOU J, ZHI X Q, WANG S, et al. Rheological properties of Composition B in slow cook-off process [J]. Explosion and Shock Wave, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
    [4] ZERKLE D K, NUNEZ M P, ZUCKER J M. Molten composition B viscosity at elevated temperature [J]. Journal of Energetic Materials, 2016, 34(4): 368–383. DOI: 10.1080/07370652.2015.1102179.
    [5] DAVIS S M, ZERKLE D K. Short communication: estimation of yield stress/viscosity of molten octol [J]. AIP Advances, 2018, 8(5): 055202. DOI: 10.1063/1.5027397.
    [6] DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Molten composition B-3 yield stress model [J]. AIP Conference Proceedings, 2018, 1979(1): 150011. DOI: 10.1063/1.5044967.
    [7] DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Integratedrheology model: explosive composition B-3 [J]. Journal of Energetic Materials, 2018, 36(4): 398–411. DOI: 10.1080/07370652.2018.1451573.
    [8] JAN H E. Slow heating, munitions test procedures: STANAG 4382 [S]. Brussels: NATO Standerdization Agency, 2003.
    [9] MCCALLEN R, DUNN T, NICHOLS A, et al, Modeling of thermal convection of liquid TNT for cook-off [C] // Nuclear Explosives Code Development Conference, Monterey, 2003.
    [10] PARRY M A, BILLON H H. A note on the coefficient of viscosity of pure molten 2, 4, 6-trinitrotoluene (TNT) [J]. Rheologica Acta, 1988, 27(6): 661–663. DOI: 10.1007/BF01337463.
    [11] PARRY M A, BILLON H H. Flow behavior of molten 2, 4, 6-trinitrotoluene (TNT) between concentric cylinders [J]. Rheologica Acta, 1990, 29(5): 462–468. DOI: 10.1007/BF01376797.
    [12] NICHOLS A L. Improved cook-off modeling of multi-component cast explosives [J]. AIP Conference Proceedings, 2018: 150029. DOI: 10.1063/1.5044985.
    [13] GUILLEMIN J P, BRUNET L, BONNEFOY O, et al. A flow time model for melt-cast insensitive explosive process [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 261–266. DOI: 10.1002/prep.200700028.
    [14] ZHU D L, ZHOU L, ZHANG X R. Rheological behavior of DNAN/HMX melt-cast explosives [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(12): 1583–8. DOI: 10.1002/prep.201900117.
    [15] PAPANASTASIOU T C. Flows of materials with yield [J]. Journal of Rheology, 1987, 31(5): 385–404. DOI: 10.1122/1.549926.
    [16] HOBBS M L, KANESHIGE M J, TODD S N, et al. RDX solubility in TNT at high temperatures [J]. Journal of Thermal Analysis and Calorimetry, 2019, 142(2): 861–869. DOI: 10.1007/s10973-019-08924-z.
    [17] HOBBS M L, KANESHIGE M J, ANDERSON M U. Cook-off of a melt-castableexplosive (Comp-B) [C] // Proceedings of the 27th Propulsion Systems Hazards Joint Subcommittee Meeting. Monterrey: SNL-NM, 2012.
    [18] SANHYE W, DUBOIS C, LAROCHE I, et al. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797–3811. DOI: 10.1002/aic.15288.
    [19] McCLELLAND M A, GLASCOE E A, NICHOLS A L, et al, ALE3D simulation of incompressible flow, heat transfer, and chemical decomposition of Comp B in slow cookoff experiments [C] // 15th International Detonation Symposium. 2014: 1196−1206.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  1275
  • HTML全文浏览量:  581
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-01-02
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回