珊瑚砂应变率效应研究

董凯 任辉启 阮文俊 宁惠君 郭瑞奇 黄魁

董凯, 任辉启, 阮文俊, 宁惠君, 郭瑞奇, 黄魁. 珊瑚砂应变率效应研究[J]. 爆炸与冲击, 2020, 40(9): 093102. doi: 10.11883/bzycj-2019-0432
引用本文: 董凯, 任辉启, 阮文俊, 宁惠君, 郭瑞奇, 黄魁. 珊瑚砂应变率效应研究[J]. 爆炸与冲击, 2020, 40(9): 093102. doi: 10.11883/bzycj-2019-0432
DONG Kai, REN Huiqi, RUAN Wenjun, NING Huijun, GUO Ruiqi, HUANG Kui. Study on strain rate effect of coral sand[J]. Explosion And Shock Waves, 2020, 40(9): 093102. doi: 10.11883/bzycj-2019-0432
Citation: DONG Kai, REN Huiqi, RUAN Wenjun, NING Huijun, GUO Ruiqi, HUANG Kui. Study on strain rate effect of coral sand[J]. Explosion And Shock Waves, 2020, 40(9): 093102. doi: 10.11883/bzycj-2019-0432

珊瑚砂应变率效应研究

doi: 10.11883/bzycj-2019-0432
详细信息
    作者简介:

    董 凯(1989- ),男,博士研究生,dongkai@njust.edu.cn

    通讯作者:

    任辉启(1953- ),男,博士,研究员,1933236975@qq.com

  • 中图分类号: O347.3

Study on strain rate effect of coral sand

  • 摘要: 为研究应变率对珊瑚砂力学特性的影响,用直径37 mm的分离式Hopkinson压杆(SHPB)对两类珊瑚砂进行了冲击实验,得到了460~1300 s−1应变率范围内不同密实度的一维应变压缩应力-应变关系;结合准静态(10−4 s−1)压缩的实验结果,发现珊瑚砂存在明显的应变率效应;通过对比两类砂物理特性,认为应变率敏感性与内孔隙和粒间摩擦密切相关;提出了率型本构模型中动态增强系数的计算模型,可为珊瑚砂在冲击下的数值计算提供理论依据。
  • 图  1  珊瑚砂级配曲线

    Figure  1.  Particle size distribution of coral sand

    图  2  珊瑚砂颗粒图

    Figure  2.  Pictures of coral sand particles

    图  3  珊瑚砂试样装配图

    Figure  3.  Test section for coral sand specimen assembly

    图  4  最高应变率下试样前后端面应力平衡检验

    Figure  4.  Dynamic stress equilibrium check of specimen at highest strain rate

    图  5  冲击实验下应力-应变曲线的一致性检验

    Figure  5.  Stress-strain curves of the sand under the identical loading condition

    图  6  准静态(应变率:6.25×10−4 s−1)压缩珊瑚砂应力-应变曲线

    Figure  6.  Axial stress-strain curves of coral sand under static loading (Strain rate: 6.25×10−4 s−1)

    图  7  不同相对密实度下1#珊瑚砂应力-应变曲线

    Figure  7.  Axial stress-strain curves of coral sand 1# under different compactness levels

    图  8  不同相对密实度下2#珊瑚砂应力-应变曲线

    Figure  8.  Axial stress-strain curves of coral sand 2# under different compactness levels

    图  9  珊瑚砂孔隙比与轴向压力的关系

    Figure  9.  Relationship between void ration of coral sand and axial pressure

    图  10  相同密度下两种珊瑚砂应力-应变曲线

    Figure  10.  Axial stress-strain curves of two types of coral sand with the same density

    图  11  相同密度珊瑚砂增强系数随应变率的变化关系

    Figure  11.  Relationship between strengthening coefficient and strain rate

    图  12  两种形状珊瑚砂破碎模式

    Figure  12.  Different broken modes of coral sand under compression

    图  13  动态增强系数与压缩应变的关系

    Figure  13.  Relation curves of dynamic intensification factor and strain

    表  1  珊瑚砂基本物理特性

    Table  1.   Physical mechanical properties of dry coral sand

    珊瑚砂中间粒径/
    mm
    不均
    系数
    曲率
    系数
    最大干密度/
    (g·cm−3)
    最小干密度/
    (g·cm−3)
    1#0.4802.3580.9241.3171.136
    2#0.3562.2401.0701.2050.980
    下载: 导出CSV
  • [1] NOORANY I. Classification of marine sediments [J]. Journal of Geotechnical Engineering, 1989, 115(1): 23–37. DOI: 10.1061/(ASCE)0733-9410(1989)115:1(23).
    [2] 汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.
    [3] 高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究 [J]. 岩土力学, 2019, 40(10): 3897–3908, 3919. DOI: 10.16285/j.rsm.2018.2085.

    GAO R, YE J H. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea [J]. Rock and Soil Mechanics, 2019, 40(10): 3897–3908, 3919. DOI: 10.16285/j.rsm.2018.2085.
    [4] 谌民, 张涛, 单华刚, 等. 钙质砂压缩波速与物理性质参数关系研究 [J]. 岩土力学, 2019, 40(6): 2275–2283. DOI: 10.16285/j.rsm.2018.1160.

    CHEN M, ZHANG T, SHAN H G, et al. Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275–2283. DOI: 10.16285/j.rsm.2018.1160.
    [5] WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea [J]. Engineering Geology, 2011, 120(1−4): 40–47. DOI: 10.1016/j.enggeo.2011.03.011.
    [6] WANG X Z, WANG X, JIN Z C, et al. Investigation of engineering characteristics of calcareous soils from fringing reef [J]. Ocean Engineering, 2017, 134: 77–86. DOI: 10.1016/j.oceaneng.2017.02.019.
    [7] 钱七虎, 王明洋. 岩土中的冲击爆炸效应[M]. 北京: 国防工业出版社, 2010.
    [8] XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading [J]. Géotechnique Letters, 2016, 6(3): 199–204. DOI: 10.1680/jgele.16.00056.
    [9] 赵章泳, 邱艳宇, 紫民, 等. 含水率对非饱和钙质砂动力特性影响的试验研究 [J]. 爆炸与冲击, 2020, 40(2): 023102. DOI: 10.11883/bzycj-2019-0066.

    ZHAO Z Y, QIU Y Y, ZI M, et al. Experimental study on dynamic compression of unsaturated calcareous sand [J]. Explosion and Shock Waves, 2020, 40(2): 023102. DOI: 10.11883/bzycj-2019-0066.
    [10] LV Y R, LIU J G, XIONG Z M. One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 192–201. DOI: 10.1016/j.jrmge.2018.04.013.
    [11] YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125: 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
    [12] 魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.

    WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.
    [13] 文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究 [J]. 爆炸与冲击, 2019, 39(3): 033101. DOI: 10.11883/bzycj-2018-0015.

    WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2019, 39(3): 033101. DOI: 10.11883/bzycj-2018-0015.
    [14] FLOREZ E S. A study of strain rate effects on the mechanical behavior of sand [D]. New York: New York University Tandon School of Engineering, 2016: 137−143.
    [15] HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
    [16] 郑文, 徐松林, 胡时胜. 侧限压缩下干燥砂的动态力学性能 [J]. 爆炸与冲击, 2011, 31(6): 619–623. DOI: 10.11883/1001-1455(2011)06-0619-05.

    ZHENG W, XU S L, HU S S. Dynamic mechanical properties of dry sand under confined compression [J]. Explosion and Shock Waves, 2011, 31(6): 619–623. DOI: 10.11883/1001-1455(2011)06-0619-05.
    [17] SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    [18] BRAGOV A M, KOTOV V L, LOMUNOV A K, et al. Measurement of the dynamic characteristics of soft soils using the Kolsky method [J]. Journal of Applied Mechanics and Technical Physics, 2004, 45(4): 580–585. DOI: 10.1023/B:JAMT.0000030338.66701.e9.
    [19] LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001.
    [20] HUANG J, XU S, HU S. Effects of grain size and gradation on the dynamic responses of quartz sands [J]. International Journal of Impact Engineering, 2013, 59: 1–10. DOI: 10.1016/j.ijimpeng.2013.03.007.
    [21] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. DOI: 10.1016/j.ijimpeng.2007.07.004.
    [22] MARTIN B E, CHEN W N, SONG B, et al. Moisture effects on the high strain-rate behavior of sand [J]. Mechanics of Materials, 2009, 41(6): 786–798. DOI: 10.1016/j.mechmat.2009.01.014.
    [23] 张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究 [J]. 岩石力学与工程学报, 2005, 24(18): 3327–3331. DOI: 10.3321/j.issn:1000-6915.2005.18.022.

    ZHANG J M, WANG R, SHI X F, et al. Compression and crushing behavior of calcareous sand under confined compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327–3331. DOI: 10.3321/j.issn:1000-6915.2005.18.022.
    [24] 吕亚茹, 李治中, 李浪. 高应力状态下钙质砂的一维压缩特性及试验影响因素分析 [J]. 岩石力学与工程学报, 2019, 38(S1): 3142–3150. DOI: 10.13722/j.cnki.jrme.2018.0175.

    LV Y R, LI Z Z, LI L. One-dimensional compression behavior of calcareous sand and its experimental technology under high stress conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3142–3150. DOI: 10.13722/j.cnki.jrme.2018.0175.
    [25] LUO H, LU H, COOPER W L, et al. Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates [J]. Experimental Mechanics, 2011, 51(9): 1499–1510. DOI: 10.1007/s11340-011-9475-2.
    [26] DE COLA F, PELLEGRINO A, GLÖßNER C, et al. Effect of particle morphology, compaction, and confinement on the high strain rate behavior of sand [J]. Experimental Mechanics, 2017, 58(2): 223–242. DOI: 10.1007/s11340-017-0331-x.
    [27] PARAB N D, CLAUS B, HUDSPETH M C, et al. Experimental assessment of fracture of individual sand particles at different loading rates [J]. International Journal of Impact Engineering, 2014, 68: 8–14. DOI: 10.1016/j.ijimpeng.2014.01.003.
    [28] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017: 133−135.
    [29] 宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 31−33.
    [30] 席道瑛, 徐松林. 岩石物理与本构理论[M]. 合肥: 中国科学技术大学出版社, 2016: 166−167.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  3124
  • HTML全文浏览量:  1010
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-01-21
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回