固体炸药爆轰与惰性介质相互作用的一种扩散界面模型

于明

于明. 固体炸药爆轰与惰性介质相互作用的一种扩散界面模型[J]. 爆炸与冲击, 2020, 40(10): 104202. doi: 10.11883/bzycj-2019-0435
引用本文: 于明. 固体炸药爆轰与惰性介质相互作用的一种扩散界面模型[J]. 爆炸与冲击, 2020, 40(10): 104202. doi: 10.11883/bzycj-2019-0435
YU Ming. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media[J]. Explosion And Shock Waves, 2020, 40(10): 104202. doi: 10.11883/bzycj-2019-0435
Citation: YU Ming. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media[J]. Explosion And Shock Waves, 2020, 40(10): 104202. doi: 10.11883/bzycj-2019-0435

固体炸药爆轰与惰性介质相互作用的一种扩散界面模型

doi: 10.11883/bzycj-2019-0435
基金项目: 国家自然科学基金(11772066,11272064);国防基础科研核科学挑战专题(TZZT2016002);中国工程物理研究院创新发展基金(CX2019026)
详细信息
    作者简介:

    于 明(1971- ),男,博士,研究员,yu_ming@iapcm.ac.cn

  • 中图分类号: O381

An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media

  • 摘要: 提出一种保持热力学一致性的扩散界面模型,用来数值模拟固体炸药爆轰与惰性介质的相互作用问题。基于混合网格内各组分物质间可以达到力学平衡状态而不能达到热学平衡状态的假设,由混合网格能量守恒以及压力相等条件,推导出每种组分物质的体积分数演化方程。由此获得的扩散界面模型包括组分物质的质量守恒方程、混合物质的动量及总能量守恒方程,同时包括组分物质的体积分数演化方程和混合物质的压力演化方程。该扩散界面模型的主要特点是考虑了化学反应以及热学非平衡的影响。提出的扩散界面模型在物质界面附近不会出现物理量的非物理振荡现象、适用于任意表达形式的物质状态方程以及任意数目的惰性介质。
  • 图  1  一维爆轰的压力增长过程

    Figure  1.  Growth of pressure in one-dimensional detonation

    图  2  滑移爆轰约束构型图

    Figure  2.  Configuration of confinement effect

    图  3  铜约束爆轰波传播的密度及压力分布

    Figure  3.  Distribution of density and pressure in detonation flowfield under copper confinement

    图  4  铜约束下爆轰波阵面形态

    Figure  4.  Detonation flowfield nearby explosives under copper confinement

    图  5  爆轰波绕射构型图

    Figure  5.  The configuration for the diffraction of detonation wave

    图  6  爆轰波绕射流场图

    Figure  6.  The flowfield for the diffraction of detonation wave at various simulation times

  • [1] NEUMANN J V, RICHTMYER R D. A method for the numerical calculations of hydrodynamical shocks [J]. Journal of Applied Physics, 1950, 21: 232–238. DOI: 10.1063/1.1699639.
    [2] WILKINS M L. Calculation of elastic-plastic flow, methods in computational physics: Vol.3 [M]. New York: Academic Press, 1964: 211−263.
    [3] BENSON D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2−3): 235–394. DOI: 10.1016/0045-7825(92)90042-I.
    [4] BENSON D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems [J]. Computational Mechanics, 1995, 15(6): 558–571. DOI: 10.1007/BF00350268.
    [5] GLIMM J, ISAACSON E, MARCHESIN D, et al. Front tracking for hyperbolic systems [J]. Advances in Applied Mathematics, 1981, 2(1): 91–119. DOI: 10.1016/0196-8858(81)90040-3.
    [6] TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169: 708–759. DOI: 10.1006/jcph.2001.6726.
    [7] HIRT C, NICHOLS B. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39: 201–225. DOI: 10.1016/0021-9991(81)90145-5.
    [8] SAUREL R, ABGRALL R. A multiphase Godunov method for compressible multifluid and multiphase flows [J]. Journal of Computational Physics, 1999, 150: 425–467. DOI: 10.1006/jcph.1999.6187.
    [9] OSHER S, SMEREKA P. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114: 146–159. DOI: 10.1006/jcph.1994.1155.
    [10] ASLAM T, BDZIL J, STEWART D. Level set method applied to modeling detonation shock dynamics [J]. Journal of Computational Physics, 1996, 126: 390–409. DOI: 10.1006/jcph.1996.0145.
    [11] ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics [J]. Annual Review of Fluid Mechanics, 1998, 30: 139–165. DOI: 10.1146/annurev.fluid.30.1.139.
    [12] YUE P, FENG J J, LIU C, et al. , A diffuse-interface method for simulating two-phase flows of complex fluids [J]. Journal of Fluid Mechanics, 2004, 515: 293–317. DOI: 10.1017/S0022112004000370.
    [13] PETITPAS F, SAUREL R, FRANQUET E, et al. Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations [J]. Shock Wave, 2009, 19: 377–401. DOI: 10.1007/s00193-009-0217-7.
    [14] FAVRIS N, GAVRILYUK S, RAUREL R. , Solid-fluid diffuse interface model in cases of extreme deformations [J]. Journal of Computational Physics, 2009, 228: 6037–6077. DOI: 10.1016/j.jcp.2009.05.015.
    [15] SCHOCH S, NIKIFORAKIS N, LEE B, et al. Multi-phase simulation of ammonium nitrate emulsion detonation [J]. Combustion and Flame, 2013, 160: 1883–1899. DOI: 10.1016/j.combustflame.2013.03.033.
    [16] NDANOU S, FAVTIE N, GAVRILYUK S. Multi-solid and multi-fluid diffuse interface model: applications to dynamics fracture and fragmentation [J]. Journal of Computational Physics, 2015, 295: 523–555. DOI: 10.1016/j.jcp.2015.04.024.
    [17] SAUREL R, PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 105–130. DOI: 10.1146/annurev-fluid-122316-050109.
    [18] MICHAEL L, NIKIFORAKIS N. A hybrid formulation for the numerical simulation of condensed phase explosives [J]. Journal of Computational Physics, 2016, 316: 193–217. DOI: 10.1016/j.jcp.2016.04.017.
    [19] TON V T. Improved shock-capturing methods for multicomponent and reactive flows [J]. Journal of Computational Physics, 1996, 128: 237–253. DOI: 10.1006/jcph.1996.0206.
    [20] SHYUE K. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. DOI: 10.1006/jcph.1998.5930.
    [21] BANKS J, SCHWENDEMAN D, KAPILA A. A high-resolution Godunov method for compressible multi-material flow on overlapping grids [J]. Journal of Computational Physics, 2007, 223(1): 262–297. DOI: 10.1016/j.jcp.2006.09.014.
    [22] LEE B J, TORO E F, CASTRO C E, et al. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state [J]. Journal of Computational Physics, 2013, 246: 165–183. DOI: 10.1016/j.jcp.2013.03.046.
    [23] BAER M R, NUNZIATO J W. A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials [J]. International Journal of Multiphase Flow, 1986, 12: 861–889. DOI: 10.1016/0301-9322(86)90033-9.
    [24] KAPILA A K, MENIKOFF R, BDZIL J B, et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations [J]. Physics of Fluids, 2001, 13(10): 3002–3024. DOI: 10.1063/1.1398042.
    [25] ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181: 577–616. DOI: 10.1006/jcph.2002.7143.
    [26] MASSONI J, SAUREL R, NKONGA B. Some models and Eulerian methods for interfaces between compressible fluids with heat transfer [J]. International Journal of Heat and Mass Transfer, 2002, 45(6): 1287–1307. DOI: 10.1016/S0017-9310(01)00238-1.
    [27] MURRONE A, GUILLARD H. A five equation reduced model for compressible two phase flow problems [J]. Journal of Computational Physics, 2005, 202(2): 664–698. DOI: 10.1016/j.jcp.2004.07.019.
    [28] GROVE J W. Pressure-velocity equilibrium hydrodynamics models [J]. Acta Mathematica Scientia, 2010, 30B(2): 563–594.
    [29] ZHANG F. Shock wave science and technology reference library: Vol.6 [M]. Berlin: Springer-Verlag Berlin Heidelberg, 2012.
    [30] STRANG G. On the construction and comparison of difference schemes [J]. SIAM Journal of Numerical and Analysis, 1968, 5: 506–517. DOI: 10.1137/0705041.
    [31] LEVEQUE R J. Wave propagation algorithms for multi-dimensional hyperbolic systems [J]. Journal of Computational Physics, 1997, 131(1): 327–353.
    [32] ZHONG X L. Additive semi-implicit Runge-Kutta schemes for computing high-speed nonequilibrium reactive flows [J]. Journal of Computational Physics, 1996, 128: 19–31. DOI: 10.1006/jcph.1996.0193.
    [33] FICKETT W, DAVIS W C. Detonation: theory and experiment [M]. New York: Dover, 1979.
    [34] TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials [C] // The 12th International Symposium on Detonation. San Diego, California, 2002: 641−649.
  • 加载中
图(6)
计量
  • 文章访问数:  4133
  • HTML全文浏览量:  1390
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2020-06-12
  • 网络出版日期:  2020-09-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回