基于面积折减等效模型的光电倍增管水下内爆机理研究

孟令存 闫明 杜志鹏 张磊

孟令存, 闫明, 杜志鹏, 张磊. 基于面积折减等效模型的光电倍增管水下内爆机理研究[J]. 爆炸与冲击, 2020, 40(8): 082102. doi: 10.11883/bzycj-2019-0436
引用本文: 孟令存, 闫明, 杜志鹏, 张磊. 基于面积折减等效模型的光电倍增管水下内爆机理研究[J]. 爆炸与冲击, 2020, 40(8): 082102. doi: 10.11883/bzycj-2019-0436
MENG Lingcun, YAN Ming, DU Zhipeng, ZHANG Lei. Underwater implosion mechanism of PMT area reduction equivalent model[J]. Explosion And Shock Waves, 2020, 40(8): 082102. doi: 10.11883/bzycj-2019-0436
Citation: MENG Lingcun, YAN Ming, DU Zhipeng, ZHANG Lei. Underwater implosion mechanism of PMT area reduction equivalent model[J]. Explosion And Shock Waves, 2020, 40(8): 082102. doi: 10.11883/bzycj-2019-0436

基于面积折减等效模型的光电倍增管水下内爆机理研究

doi: 10.11883/bzycj-2019-0436
基金项目: 国家自然科学基金(10672181)
详细信息
    作者简介:

    孟令存(1994— ),男,硕士研究生,1605733924@qq.com

    通讯作者:

    闫 明(1978— ),男,博士,教授,yanming7802@163.com

  • 中图分类号: O381;U663.85

Underwater implosion mechanism of PMT area reduction equivalent model

  • 摘要: 光电倍增管(photomultiplier tube,PMT)是中微子探测器的核心部件,是由玻璃材料制成的内部真空的薄壳结构,排列在深水中工作,若一个PMT被压溃会产生内爆冲击波,会引起周围PMT发生殉爆。针对PMT内爆,建立了PMT内爆数值计算简化模型,并将计算与试验结果进行对比,验证简化模型的合理性。在此基础上,提出了基于面积折减等效模型的PMT内爆计算方法,通过等效模型分析了防护装置破口面积对PMT内爆的影响,得出随着防护装置破口面积的减小,水流碰撞发生PMT内爆的时刻相应提前,内爆产生的冲击波脉宽基本保持不变,冲击波压力峰值明显减小。该研究有利于找到有效的PMT内爆防护方法。
  • 图  1  光电倍增管实物图

    Figure  1.  Picture of photomultiplier tube

    图  2  内爆试验装置示意图

    Figure  2.  Schematic of test device for implosion

    图  3  PMT内爆过程

    Figure  3.  Process of the PMT implosion

    图  4  内爆数值计算模型

    Figure  4.  Implosion simulation model

    图  5  数值模拟与试验测点压力对比

    Figure  5.  Comparison of the simulation and test pressures of the measuring points

    图  6  数值模拟与试验测得的比冲量对比

    Figure  6.  Comparison of the simulation and test impulse of the measuring points

    图  7  水域流场变化过程

    Figure  7.  Evolution of the water field

    图  8  水流前锋速度变化过程

    Figure  8.  Evolution of the water front velocity

    图  9  PMT防护装置示意图

    Figure  9.  Schematic diagram of PMT protection device

    图  10  PMT防护装置等效模型

    Figure  10.  Equivalent models of the PMT protection device

    图  11  水域测点分布示意图

    Figure  11.  Distribution of measuring points in water field

    图  12  水域流场分布

    Figure  12.  Distribution of water field

    图  13  A1测点冲击波压力变化

    Figure  13.  Shock wave pressures varied with time at measuring point A1

    图  14  冲击波压力峰值分布

    Figure  14.  Distribution of peak pressure

    图  15  水流前锋速度

    Figure  15.  Velocities of the water fronts

    图  16  压力峰值与水流前锋速度变化

    Figure  16.  Variation of the peak pressure and the velocity of water front

    表  1  数值模拟与试验所得的测点压力峰值对比

    Table  1.   Difference between the simulation and test peak pressures of the measuring points

    测点压力峰值/MPa误差/%测点压力峰值/MPa误差/%
    试验数值模拟试验数值模拟
    114.1312.87 8.93 7.08 6.65 6.1
    2 7.68 6.6513.44 3.19 2.8510.7
    下载: 导出CSV

    表  2  数值模拟与试验所得的测点比冲量峰值对比

    Table  2.   Difference between the simulation and test peak impulse of the measuring points

    测点比冲量峰值/(kPa·s)误差/%测点比冲量峰值/(kPa·s)误差/%
    试验数值模拟试验数值模拟
    11.581.3514.630.870.83 4.6
    21.210.9124.840.320.2812.5
    下载: 导出CSV

    表  3  破碎面积具体值

    Table  3.   The value of break area

    αSb/m2αSb/m2
    1.00.7850.80.628
    0.90.7070.70.550
    下载: 导出CSV
  • [1] LING J J, MARY B, MILIND D, et al. Implosion chain reaction mitigation in underwater assemblies of photomultiplier tubes [J]. Nuclear Instruments and Methods in Physics Research, 2013, 729: 491–499. DOI: 10.1016/j.nima.2013.07.056.
    [2] IMAEDA H, SUN Mingyu. Dynamic characteristics of underwater objects after shock wave loading [C] // AIAA Aerospace Sciences Meeting. Kissimmee Florida, 2018. DOI: 10.2514/6.2018-0579.
    [3] SONG G, CHEN Z Y, LONG Y, et al. Experimental and numerical investigation of the centrifugal model for underwater explosion shock wave and bubble pulsation [J]. Ocean Engineering, 2017, 142: 523–531. DOI: 10.1016/j.oceaneng.2017.04.035.
    [4] NAVAL U. Underwater implosion of cylindrical metal tubes [J]. Journal of Applied Mechanics, 2013, 80: 1–11.
    [5] 包亦望. 脆性材料在双向应力下的断裂实验与理论分析 [J]. 力学学报, 1998, 30(6): 682–690. DOI: 10.3321/j.issn:0459-1879.1998.06.007.

    BAO Y W. Experiments and theoretic analysis for the fracture of brittle materials under biaxial stress [J]. Journal of Theoretical and Applied Mechanics, 1998, 30(6): 682–690. DOI: 10.3321/j.issn:0459-1879.1998.06.007.
    [6] YOSHIMURA M. Report on the Super-Kamiokande accident[R]. Institute of Space and Astronautical Science, 2001.
    [7] MILIND D, JEFFREY D, LING J J, et al. Underwater implosions of large format photo-multiplier tubes [J]. Nuclear Instruments and Methods in Physics Research, 2012, 670: 61–67. DOI: 10.1016/j.nima.2011.12.033.
    [8] GISH L A, WIERZBICKI T. Estimation of the underwater implosion pulse from cylindrical metal shells [J]. International Journal of Impact Engineering, 2015, 77: 166–175. DOI: 10.1016/j.ijimpeng.2014.11.018.
    [9] 杜志鹏, 杜俭业, 李营, 等. 不可压缩流体中球型容器内爆理论模型研究 [J]. 兵工学报, 2015, 36(S1): 92–96.

    DU Z P, DU J Y, LI Y, et al. An implosion theory for the spherical hollow vessel in the incompressible fluid [J]. Acta Armamentarii, 2015, 36(S1): 92–96.
    [10] 黄治新, 喻敏, 杜志鹏, 等. 水下中空结构物内爆试验方法研究 [J]. 振动与冲击, 2017, 36(3): 27–31. DOI: 10.13465/j.cnki.jvs.2017.03.005.

    HUANG Z X, YU M, DU Z P, et al. Implosion test method for underwater hollow structures [J]. Journal of Vibrtion and Shock, 2017, 36(3): 27–31. DOI: 10.13465/j.cnki.jvs.2017.03.005.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  3967
  • HTML全文浏览量:  1287
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2020-02-11
  • 网络出版日期:  2020-07-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回