侵彻条件下两类靶体材料静阻力的探讨

程怡豪 王明洋 王德荣 宋春明 岳松林 谭仪忠

程怡豪, 王明洋, 王德荣, 宋春明, 岳松林, 谭仪忠. 侵彻条件下两类靶体材料静阻力的探讨[J]. 爆炸与冲击, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443
引用本文: 程怡豪, 王明洋, 王德荣, 宋春明, 岳松林, 谭仪忠. 侵彻条件下两类靶体材料静阻力的探讨[J]. 爆炸与冲击, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443
CHENG Yihao, WANG Mingyang, WANG Derong, SONG Chunming,  YUE  Songlin, TAN Yizhong. Discussion on essences of static resistance of two types of material under penetration[J]. Explosion And Shock Waves, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443
Citation: CHENG Yihao, WANG Mingyang, WANG Derong, SONG Chunming,  YUE  Songlin, TAN Yizhong. Discussion on essences of static resistance of two types of material under penetration[J]. Explosion And Shock Waves, 2020, 40(6): 061101. doi: 10.11883/bzycj-2019-0443

侵彻条件下两类靶体材料静阻力的探讨

doi: 10.11883/bzycj-2019-0443
基金项目: 国家自然科学基金(51409258,11602303,11772355);江苏省自然科学基金(BK20190570);中国博士后基金(2018M643853,2018M643854);江苏省博士后基金(2018K047A)
详细信息
    作者简介:

    程怡豪(1986- ),男,博士,讲师,05105432@163.com

    通讯作者:

    王德荣(1968- ),男,博士,副教授,wdrjb@163.com

  • 中图分类号: O347

Discussion on essences of static resistance of two types of material under penetration

  • 摘要: 以空腔膨胀理论为主要理论工具,通过比较侵彻近区塑性材料和脆性材料动力学行为的差异,对两类不同材料静阻力(Rt)的本质进行探讨,并对脆性材料侵彻的若干应用问题提出建议。研究表明:(1)Rt是靶体介质以固体特性抵抗局部扩孔、具有时间平均特性的弹体横截面平均应力,其具体取值随着材料的物理力学特性、侵彻模型、撞击速度等因素而变化,因此不是材料的固有特性。(2)对于塑性靶体的非变形侵彻问题,静态空腔膨胀理论的结果能够对Rt作出比较合理的预测;对于拟流体侵彻问题,一般需要对静态空腔膨胀理论的结果加以修正。(3)脆性材料的Rt主要取决于破碎后介质的力学特性而与完整材料的力学特性关系不大,且与单轴抗压强度之间不满足纯粹的单调关系;当侵彻速度较低时,应考虑侵彻速度对侵彻阻力的强化作用,这种强化作用的本质是内摩擦;当侵彻速度足够高时,脆性材料体现出恒定不变的“动力硬度”,其反映了材料的本征阻力特性。(4)提高脆性材料的侵彻阻力的关键在于减小应力波峰值后环向拉应力的幅值、抑制材料的破碎速度和程度,具体措施包括主动或被动地增加外围压、对基质中添加增韧增强纤维等;为了实现对脆性材料侵彻问题更高精度的数值模拟,建议更加重视对破碎介质动力学特性的研究。
  • 图  1  塑性材料中球形空腔膨胀的响应区域

    Figure  1.  Response regions of spherical cavity expansion in plastic materials

    图  2  脆性材料中球形空腔膨胀的响应区域

    Figure  2.  Response regions of spherical cavity expansion in brittle materials

    图  3  铝靶侵彻的理论计算与实验结果[23]对比

    Figure  3.  Penetration depth intoaluminum targets between results from theoretical calculations and experiments[23]

    图  4  不同fc条件下混凝土Rt的拟合结果

    Figure  4.  Fitted Rt values of concrete with different fc values

    图  5  不同fc条件下混凝土侵彻深度的实验结果[28]

    Figure  5.  Effect of fc on experimental penetration depth in concrete[28]

    图  6  基于球面波的腔壁应力衰减规律[32]

    Figure  6.  Decay of spherical wave stresses on cavity [32]

    图  7  完整条件下和损伤条件下脆性材料的强度模型[34]

    Figure  7.  Model for strength of intact and damaged brittle materials[34]

    图  8  花岗岩和混凝土靶体Rt随撞击速度的变化规律

    Figure  8.  Rt of granite and concrete varying with impact velocity

    图  9  花岗岩侵彻深度的实验结果与理论计算结果的预测效果[21]

    Figure  9.  Comparison of calculation results with experimental results of penetration depth in granite[21]

    表  1  不同学者建议的陶瓷Rt值 (单位:GPa)

    Table  1.   Rt values of ceramic suggested by different researchers (unit in GPa)

    陶瓷种类Kozhushko等[37]Sternberg[36]Rosenberg等[22]
    B4C42~4913.3~14.16.4
    SiC25~305~117.5
    Al2O320~259.26.0
    下载: 导出CSV
  • [1] ANDERSON C E. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [2] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [3] HILL R. The mathematical theory of plasticity [M]. Oxford: Oxford University Press, 1998.
    [4] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31/32): 4127–4146.
    [5] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [6] HE T, WEN H M, GUO X J. A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy [J]. ActaMechanicaSinica, 2011, 27(6): 1001–1012.
    [7] 彭永, 方秦, 吴昊, 等. 对弹体侵彻混凝土靶体阻力函数计算公式的探讨 [J]. 工程力学, 2015, 32(4): 112–119.

    PENG Y, FANG Q, WU H, et al. Discussion on the resistance forcing function of projectiles penetrating into concrete targets [J]. Engineering Mechanics, 2015, 32(4): 112–119.
    [8] KONG X Z, WU H, FANG Q. Rigid and eroding projectile penetration into concrete targets based on am extended dynamic cavity expansion model [J]. International Journal of Impact Engineering, 2017, 100: 13–22. DOI: 10.1016/j.ijimpeng.2016.10.005.
    [9] 卢正操, 张元迪, 文鹤鸣, 等. 长杆弹侵彻半无限混凝土靶的理论研究 [J]. 现代应用物理, 2018, 9(4): 040102.

    LU Z C, ZHANG Y D, WEN H M, et al. Theoretical study on the penetration of long rods into semi-infinite concrete target [J]. Modern Applied Physics, 2018, 9(4): 040102.
    [10] FORRESTAL M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures, 1986, 22(12): 1485–1986.
    [11] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments withlimestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [12] 张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
    [13] LI J C, MA G W, YU M H. Penetration analysis for geo-material based on unified strength criterion [J]. International Journal of Impact Engineering, 2008, 35: 1154–1163. DOI: 10.1016/j.ijimpeng.2008.01.003.
    [14] SATAPATHY S, BLESS S. Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis [J]. Mechanics of Materials, 1996, 23: 323–330. DOI: 10.1016/0167-6636(96)00022-1.
    [15] GALANOV B A, KARTUZOV V V, IVANOV S M. New analytical model of expansion of spherical cavity in brittle material basedon the concepts of mechanics of compressible porous and powder materials [J]. International Journal of Impact Engineering, 2008, 35: 1522–1528. DOI: 10.1016/j.ijimpeng.2008.07.016.
    [16] ROSENBERG Z, DEKEL E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics [J]. International Journal of Impact Engineering, 2008, 35: 147–154. DOI: 10.1016/j.ijimpeng.2007.01.005.
    [17] TATE A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387–399. DOI: 10.1016/0022-5096(67)90010-5.
    [18] RIEDELW, WICKLEIN M, THOMA K. Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35: 155–171. DOI: 10.1016/j.ijimpeng.2007.02.001.
    [19] 李干, 王明洋, 宋春明, 等. 超高速飞片撞击花岗岩实验及其动态力学性能研究 [C] // 第六届全国工程安全与防护学术会议. 湘潭: 中国岩石力学与工程学会工程安全与防护分会, 2018.
    [20] PETERSEN CF. Shock wave studies of selected rocks [D]. California: Stanford University, 1969.
    [21] 王明洋, 李杰, 李海波, 等. 岩石的动态压缩行为与超高速动能弹毁伤效应计算 [J]. 爆炸与冲击, 2018, 38(6): 1200–1217. DOI: 10.11883/bzycj-2018-0173.

    WANG M Y, LI J, LI H B, et al. Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb [J]. Explosion and Shock Waves, 2018, 38(6): 1200–1217. DOI: 10.11883/bzycj-2018-0173.
    [22] ROSENBERG Z, TSALIAH J. Applying Tate’s model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
    [23] FORRESTAL M J, TZOU D Y, ASKARI E, et al. Penetration into ductile metal targets with rigid spherical-nose rods [J]. International Journal of Impact Engineering, 1995, 16(5/6): 699–710.
    [24] ROSENBERG Z, DEKEL E. On the deep penetration of deforming long rods [J]. International Journal of Solids and Structures, 2010, 47: 238–250. DOI: 10.1016/j.ijsolstr.2009.09.030.
    [25] TATE A. Long rod penetration models: Part Ⅱ: extensions to the hydrodynamic theory of penetration [J]. International Journal of Mechanical Sciences, 1986, 28(9): 599–612. DOI: 10.1016/0020-7403(86)90075-5.
    [26] WALKER J D, ANDERSON C E. A time-dependent model for long-rod penetration [J]. International Journal of ImpactEngineering, 1995, 16(1): 19–48.
    [27] ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods: revisited [J]. International Journal of Protective Structure, 2010, 1: 125–144. DOI: 10.1260/2041-4196.1.1.125.
    [28] ZHANG M H, SHIM V P, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of ImpactEngineering, 2005, 31: 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [29] GRADY D E. Shock-wave compression of brittle solids [J]. Mechanics of Materials, 1998, 29: 181–203.
    [30] LUNDBORG N. Strength of rock-like materials [J]. International Journal of Rock Mechanics and Mining Sciences, 1968, 5: 427–454. DOI: 10.1016/0148-9062(68)90046-6.
    [31] ROSENBERG Z. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials [J]. Journal of Applied Physics, 1993, 74(1): 752–753. DOI: 10.1063/1.355247.
    [32] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005.
    [33] 胡进军, 谢礼立. 地震超剪切破裂研究现状 [J]. 地球科学进展, 2011, 26(1): 39–47.

    HU J J, XIE L L. Review of the state-of-art researches on earthquake super-shear rupture [J]. Advance in Earth Science, 2011, 26(1): 39–47.
    [34] SATAPATHY S, BLESS S. Cavity expansion resistance of brittle materials obeying a two-curve pressure-shear behavior [J]. Journal of Applied Physics, 2000, 88(7): 4004–4012. DOI: 10.1063/1.1288007.
    [35] BAVDEKAR S, PARSARD G, SUBHASH G, et al. Animproved dynamic expanding cavity model for high-pressureand high-strain rate responseofceramics [J]. International Journal of Solids and Structures, 2017, 26: 39–47.
    [36] STERNBERG J. Material properties determining the resistance of ceramics to high velocity penetration [J]. Journal of Applied Physics, 1989, 65(9): 3417–3424. DOI: 10.1063/1.342659.
    [37] KOZHUSHKO A A, RYKOVA I I, SINANI A B. Resistance of ceramics to penetration at impact velocities above 5 km/s [J]. Journal de Physique IV, 1991, 1(C3): C3–117. 1.
    [38] ISBELL W M, ANDERSON C E, ASAY J R, et al. Penetration mechanics research in the former Soviet Union [R]. San Diego, California: Science Applications International Corp, 1992.
    [39] VLASOVA M V, KAKAZEI N G, KOVTUN V I. Failure of self-bonded silicon carbide under dynamic pressure [J]. Powder Metallurgy and Metal Ceramics, 1988, 27(4): 325–329.
    [40] 徐建波. 长杆弹对混凝土的侵彻特性研究[D]. 长沙: 国防科学技术大学, 2001.
    [41] 刘桂武, 倪长也, 金峰, 等. 陶瓷/金属复合装甲抗弹约束效应述评 [J]. 西安交通大学学报, 2011, 45(3): 7–15.

    LIU G W, NI C Y, JIN F, et al. Review of anti-ballistic confinement effects of ceramic-metal composite armor [J]. Journal of Xi’an Jiaotong University, 2011, 45(3): 7–15.
    [42] 徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.

    XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.
    [43] 蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19.

    MENG C M, SONG D Y, JIANG Z G, et al. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19.
    [44] 任劼, 党发宁, 马宗源, 等. 复杂地应力条件下聚能射流装药侵彻深部砂岩穿透深度研究 [J]. 岩石力学与工程学报, 2018, 37(3): 679–688.

    REN J, DANG F N, MA Z Y, et al. Penetration depth of shaped charge into deep sandstone under complex geostress [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 679–688.
    [45] FAN P X, WANG M Y, SONG C M. Anti-strike capability of steel-fiber reactive powder concrete [J]. Defence Science Journal, 2013, 63(4): 363–368. DOI: 10.14429/dsj.63.2407.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4418
  • HTML全文浏览量:  2088
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 修回日期:  2019-12-27
  • 网络出版日期:  2020-04-25
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回