Characteristics of environmental vibration induced by millisecond-delay blasting in metro tunnel excavation
-
摘要: 基于地铁隧道毫秒延时爆破环境振动特性现场试验,考虑爆破荷载的不规则特性,采用基于非对称加卸载准则的修正Davidenkov本构模型描述场地土体的动力非线性特性;通过改进Friedlander方程来模拟内源爆炸在圆柱形炮孔表面产生的瞬态空气冲击波;实现了包含毫秒延时爆破荷载输入和有限元-无限元耦合边界的地层-爆源体系三维精细化有限元模型,并与现场实测数据对比验证了该模型方法的有效性。对50 ms延时爆破和齐爆引起的环境振动特性进行了数值模拟,对比发现毫秒延时爆破不仅可以有效降低地表峰值振速,而且可以显著改变地表振动的频谱特性。毫秒延时爆破产生的地表振动频带较集中,对分散爆破振动能量的作用显著,且地表速度响应的主频较高,远离建筑结构自振频率,可显著降低爆破施工引起的邻近建筑物的结构振动水平。Abstract: Based on the field test of environmental vibration characteristics of subway tunnel millisecond delay blasting, considering the irregular characteristics of blasting load, a modified Davidenkov constitutive model based on asymmetric loading and unloading criterion is used to describe the dynamic nonlinear characteristics of the site soil. The transient air shock wave generated by the internal explosion on the surface of cylindrical blast hole is simulated by improving the Friedlander equation. And a three-dimensional refined finite element model of ground-blast-source system, involving the blast wave input and finite/infinite element coupling boundary, is realized. The effectiveness of the model method is verified by comparing with in-situ testing data. The environmental vibration features induced by 50 ms delay blasting and instantaneous blasting are numerically simulated. It is found that millisecond delay blasting can not only effectively reduce the surface peak vibration velocity, but also significantly change the frequency spectrum characteristics of surface vibration. The frequency band of surface vibration produced by millisecond delay blasting is relatively concentrated, which has a significant effect on dispersing blasting vibration energy. Moreover, the main frequency of surface velocity response is higher, which is far away from the natural frequency of building structure, it can significantly reduce the structural vibration level of adjacent buildings caused by blasting construction. The research results reveal the vibration characteristics and vibration reduction mechanism of millisecond delay blasting environment, which can provide scientific basis and reference for blasting construction of subway tunnel in complex urban environment.
-
表 1 鼓楼固有频率测试结果
Table 1. Test results of natural frequencies of the drum tower
模态阶数 固有频率/Hz 水平向 竖直向 1 1.37 2.00 2 2.79 2.98 表 2 土体剖面及Davidenkov模型参数
Table 2. Parameters for the soil profiles and the Davidenkov model
土层描述 厚度/m 重度/(kN·m−3) 剪切波速/(m·s−1) Davidenkov模型参数 A 2B ${\gamma _0}$/10−4 杂填土 1.3 18.5 139.5 1.05 0.84 5.5 粉质黏土 6.3 20.2 250.4 1.09 0.82 6.2 砂砾岩 12.2 22.6 558.3 1.30 0.40 21.0 -
[1] 钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001. [2] 陈庆, 王宏图, 胡国忠, 等. 隧道开挖施工的爆破振动监测与控制技术 [J]. 岩土力学, 2005, 26(6): 964–967. DOI: 10.3969/j.issn.1000-7598.2005.06.029.CHEN Q, WANG H T, HU G Z, et al. Monitoring and controlling technology for blasting vibration induced by tunnel excavation [J]. Rock and Soil Mechanics, 2005, 26(6): 964–967. DOI: 10.3969/j.issn.1000-7598.2005.06.029. [3] VERMA H K, SAMADHIYA N K, SINGH M, et al. Blast induced rock mass damage around tunnels [J]. Tunnelling and Underground Space Technology, 2018, 71: 149–158. DOI: 10.1016/j.tust.2017.08.019. [4] LI C J, LI X B. Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 323–338. DOI: 10.1016/j.ijrmms.2018.10.029. [5] 管晓明, 傅洪贤, 王梦恕. 隧道近距下穿山坡楼房爆破振动测试研究 [J]. 岩土力学, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.GUAN X M, FU H X, WANG M S. Blasting vibration characteristics monitoring of tunnel under-passing hillside buildings in short-distance [J]. Rock and Soil Mechanics, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027. [6] 李顺波, 杨军, 陈浦, 等. 精确延时控制爆破振动的实验研究 [J]. 爆炸与冲击, 2013, 33(5): 513–518. DOI: 10.11883/1001-1455(2013)05-0513-06.LI S B, YANG J, CHEN P, et al. Experimental study of blasting vibration with precisely-controlled delay time [J]. Explosion and Shock Waves, 2013, 33(5): 513–518. DOI: 10.11883/1001-1455(2013)05-0513-06. [7] 李夕兵, 凌同华. 单段与多段微差爆破地震的反应谱特征分析 [J]. 岩石力学与工程学报, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.LI X B, LING T H. Response spectrum analysis of ground vibration induced by single deck and multi-deck blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002. [8] KUMAR R, CHOUDHURY D, BHARGAVA K. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 341–349. DOI: 10.1016/j.jrmge.2015.10.009. [9] 陈士海, 燕永峰, 戚桂峰, 等. 微差爆破降震效果影响因素分析 [J]. 岩土力学, 2011, 32(10): 3003–3008. DOI: 10.3969/j.issn.1000-7598.2011.10.018.CHEN S H, YAN Y F, QI G F, et al. Analysis of influence factors of interference vibration reduction of millisecond blasting [J]. Rock and Soil Mechanics, 2011, 32(10): 3003–3008. DOI: 10.3969/j.issn.1000-7598.2011.10.018. [10] 龚敏, 吴昊骏, 孟祥栋, 等. 密集建筑物下隧道开挖微振控制爆破方法与振动分析 [J]. 爆炸与冲击, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.GONG M, WU H J, MENG X D, et al. A precisely-controlled blasting method and vibration analysis for tunnel excavation under dense buildings [J]. Explosion and Shock Wave, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09. [11] GUI Y L, ZHAO Z Y, JAYASINGHE L B, et al. Blast wave induced spatial variation of ground vibration considering field geological conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 101: 63–68. DOI: 10.1016/j.ijrmms.2017.11.016. [12] AINALIS D, KAUFMANN O, TSHIBANGU J P, et al. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 171–193. DOI: 10.1007/s00603-016-1101-2. [13] 赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证 [J]. 岩土工程学报, 2017, 39(5): 888–895. DOI: 10.11779/CJGE201705013.ZHAO D F, RUAN B, CHEN G X, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888–895. DOI: 10.11779/CJGE201705013. [14] 胡勤, 戚承志. Ramberg-Osgood土动力非线性模型在ABAQUS软件上的开发及应用 [J]. 岩土力学, 2012, 33(4): 1268–1274. DOI: 10.3969/j.issn.1000-7598.2012.04.046.HU Q, QI C Z. Development and application of Ramberg-Osgood soil dynamic nonlinear constitutive model on ABAQUS code [J]. Rock and Soil Mechanics, 2012, 33(4): 1268–1274. DOI: 10.3969/j.issn.1000-7598.2012.04.046. [15] OSTRAICH B, SADOT O, LEVINTANT O, et al. A method for transforming a full computation of the effects of a complex-explosion scenario to a simple computation by ConWep [J]. Shock Waves, 2011, 21(2): 101–109. DOI: 10.1007/s00193-011-0300-8. [16] 王明洋, 邓宏见, 钱七虎. 岩石中侵彻与爆炸作用的近区问题研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.WANG M Y, DENG H J, QIAN Q H. Study on problems of near cavity of penetration and explosion in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008. [17] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.LU W B, ZHOU C B, CHEN M, et al. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003. [18] 卢文波, 杨建华, 陈明, 等. 深埋隧洞岩体开挖瞬态卸荷机制及等效数值模拟 [J]. 岩石力学与工程学报, 2011, 30(6): 1089–1096.LU W B, YANG J H, CHEN M, et al. Mechanism and equivalent numerical simulation of transient release of excavation load for deep tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1089–1096. [19] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07. [20] YI C P, JOHANSSON D, NYBERG U, et al. Stress wave interaction between two adjacent blast holes [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1803–1812. DOI: 10.1007/s00603-015-0876-x.