[1] |
YANG R S, DING C X, YANG L Y, et al. Behavior and law of crack propagation in the dynamic-static superimposed stress field [J]. Journal of Testing and Evaluation, 2018, 46(6): 2540–2548. DOI: 10.1520/JTE20170271.
|
[2] |
张盛, 鲁义强, 王启智. 用P-CCNBD试样测定岩石动态扩展韧度和观察动态止裂现象 [J]. 岩土力学, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.ZHANG S, LU Y Q, WANG Q Z. Measurement of dynamic fracture propagation toughness of rock and observation of dynamic arrest phenomenon using P-CCNBD specimens [J]. Rock and Soil Mechanics, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.
|
[3] |
李炼, 杨丽萍, 曹富, 等. 冲击加载下的砂岩动态断裂全过程的实验和分析 [J]. 煤炭学报, 2016, 41(8): 1912–1922. DOI: 10.13225/j.cnki.jccs.2016.0161.LI L, YANG L P, CAO F, et al. Complete dynamic fracture process of sandstone under impact loading: experiment and analysis [J]. Journal of China Coal Society, 2016, 41(8): 1912–1922. DOI: 10.13225/j.cnki.jccs.2016.0161.
|
[4] |
VULIĆ N, JECIĆ S, GRUBIŠIĆ V. Validation of crack arrest technique by numerical modelling [J]. International Journal of Fatigue, 1997, 19(4): 283–291. DOI: 10.1016/S0142-1123(97)00008-X.
|
[5] |
SONG P S, SHIEH Y L. Stop drilling procedure for fatigue life improvement [J]. International Journal of Fatigue, 2004, 26(12): 1333–1339. DOI: 10.1016/j.ijfatigue.2004.04.009.
|
[6] |
WU H, IMAD A, BENSEDDIQ N, et al. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method [J]. International Journal of Fatigue, 2010, 32(4): 670–677. DOI: 10.1016/j.ijfatigue.2009.09.011.
|
[7] |
MURDANI A, MAKABE C, SAIMOTO A, et al. A crack-growth arresting technique in aluminum alloy [J]. Engineering Failure Analysis, 2008, 15(4): 302–310. DOI: 10.1016/j.engfailanal.2007.02.005.
|
[8] |
NATECHE T, MELIANI M H, MATVIENKO Y G, et al. Drilling repair index (DRI) based on two-parameter fracture mechanics for crack arrest holes [J]. Engineering Failure Analysis, 2016, 59: 99–110. DOI: 10.1016/j.engfailanal.2015.08.035.
|
[9] |
CHEN N Z. A stop-hole method for marine and offshore structures [J]. International Journal of Fatigue, 2016, 88: 49–57. DOI: 10.1016/j.ijfatigue.2016.03.010.
|
[10] |
李盟, 朱哲明, 肖定军, 等. 煤矿岩巷爆破掘进过程中周边眼对裂纹扩展止裂机理 [J]. 煤炭学报, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.LI M, ZHU Z M, XIAO D J, et al. Mechanism of crack arrest by peripheral holes during mine rock roadway excavation under blasting [J]. Journal of China Coal Society, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.
|
[11] |
杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与Ⅰ型运动裂纹相互作用的试验研究 [J]. 岩土力学, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.YANG R S, XU P, YUE Z W, et al. Laboratory study of interaction between a circular hole defect and mode Ⅰ moving crack [J]. Rock and Soil Mechanics, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.
|
[12] |
张财贵, 曹富, 李炼, 等. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度 [J]. 力学学报, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.ZHANG C G, CAO F, LI L, et al. Determination of dynamic fracture initiation, propagation, and arrest toughness of rock using SCDC specimen [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.
|
[13] |
王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
|
[14] |
WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
|
[15] |
GRÉGOIRE D, MAIGRE H, COMBESCURE A. New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials [J]. International Journal of Solids and Structures, 2009, 46(18−19): 3480–3491. DOI: 10.1016/j.ijsolstr.2009.06.003.
|
[16] |
汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.WANG X M, ZHU Z M, SHI Z B, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
|
[17] |
LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
|
[18] |
朱婷, 胡德安, 王毅刚. PMMA材料裂纹动态扩展及止裂研究 [J]. 应用力学学报, 2017, 34(2): 230–236. DOI: 10.11776/cjam.34.02.B017.ZHU T, HU D A, WANG Y G. Study on dynamic crack propagation and arrest of PMMA materials [J]. Chinese Journal of Applied Mechanics, 2017, 34(2): 230–236. DOI: 10.11776/cjam.34.02.B017.
|
[19] |
ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: 10.1016/j.ijrmms.2006.09.002.
|
[20] |
ZHU Z M. Numerical prediction of crater blasting and bench blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6): 1088–1096. DOI: 10.1016/j.ijrmms.2009.05.009.
|
[21] |
ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
|
[22] |
董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.DONG Y Q, ZHU Z M, WANG M, et al. Mode I crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
|
[23] |
DAI F, XIA K W, TANG L Z. Rate dependence of the flexural tensile strength of Laurentian granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469–475. DOI: 10.1016/j.ijrmms.2009.05.001.
|
[24] |
PERSSON A. CM1−a simple model for the dynamic deformation and failure properties of brittle materials [C] // CARLSSON R, JOHANSSON T, KAHLMAN L. 4th International Symposium on Ceramic Materials and Components for Engines. Dordrecht: Springer, 1992. DOI: 10.1007/978-94-011-2882-7_106.
|
[25] |
WONG L N Y, LI H Q. Numerical study on coalescence of two pre-existing coplanar flaws in rock [J]. International Journal of Solids and Structures, 2013, 50(22−23): 3685–3706. DOI: 10.1016/j.ijsolstr.2013.07.010.
|
[26] |
WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239–249. DOI: 10.1016/j.ijrmms.2008.03.006.
|
[27] |
BROOKS Z, ULM F J, EINSTEIN H H. Role of microstructure size in fracture process zone development of marble [C] // Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago: American Rock Mechanics Association, 2012: 1748−1757.
|
[28] |
Century Dynamics Inc. AUTODYN theory manual [M]. Pittsburgh: Century Dynamics Inc, 2005.
|
[29] |
ZEHNDER A T. Fracture mechanics [M]. New York: Springer, 2012.
|
[30] |
CHEN L S, KUANG J H. A modified linear extrapolation formula for determination of stress intensity factors [J]. International Journal of Fracture, 1992, 54(1): R3–R8. DOI: 10.1007/BF00040859.
|
[31] |
FREUND L B. Dynamic fracture mechanics [M]. New York: Cambridge University Press, 1990.
|