Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts
-
摘要: 针对管道输送可燃气体时爆炸引发的连锁安全问题,自行搭建了两节管道预混气爆炸传播及抑爆实验系统,开展了不同种类、不同盐类质量分数和不同雾通量的盐类超细水雾抑制甲烷体积分数为9.5%的甲烷-空气预混气爆炸的系列实验。基于火灾学和爆炸学理论,深入探讨了不同实验工况下爆炸超压振荡曲线、最大超压峰值、爆炸火焰阵面位置、火焰平均传播速度和火焰结构演化的差异性。研究表明:随着盐类添加剂(NaCl、NaHCO3和MgCl2)质量分数和雾通量的增大,最大爆炸超压峰值相对于纯水超细水雾作用时呈不同幅度下降,爆炸超压振荡曲线上升趋势缓慢,火焰平均传播速度下降趋势明显。爆炸火焰锋面在管道B内呈现不同次数的后退现象,到达管道末端的时间较无细水雾和纯水超细水雾下延迟效应明显。通过比较分析,发现含NaCl超细水雾在弱化爆炸超压、延缓火焰锋面推进、降低火焰平均传播速度以及火焰后退次数方面均优于含MgCl2和NaHCO3超细水雾。主要原因在于,阴离子Cl−销毁链式爆炸反应中OH·、H·自由基的能力强于
HCO−3 ,阳离子Na+销毁爆炸反应中OH·、H·自由基的能力强于Mg2+。Abstract: In order to solve the safety problem caused by flammable gas explosion in pipeline transportation, an experimental system for premixed gas explosion and explosion suppression in multiple pipelines was self-built. And then a series of premixed methane-air explosion and explosion suppression experiments were carried out under the ultrafine water mists without or with three kinds of salts in the different working conditions including the different salt mass fractions and the different mist fluxes. In the experiments, the methane volume fraction in the premixed methane-air mixture was 9.5%, and three salts used as additives were NaCl, NaHCO3 and MgCl2. According to the theories of fire science and explosion science, the different changes in the explosion characteristics were explored involving the oscillation curves and the maximum peak values of explosion overpressure, the front positions and the average propagation velocities of the explosion flame, the evolution images of the flame structure in pipe B. The results show that with the increases of salt mass fractions and ultrafine water mist fluxes with salts (NaCl, NaHCO3 and MgCl2), the maximum peaks of explosion overpressure decreased by different amplitudes compared with those under the action of pure water mist, the oscillation curves of explosion overpressure increased slowly, and the average propagation velocities of explosion flame decreased significantly. The explosion flame fronts receded different times in the pipe B. And the times when the explosion flames reached the terminal end of the pipe B delayed obviously compared with those with or without the pure ultrafine water mist. Comparisons display that the ultrafine water mist containing NaCl is superior to the ones containing MgCl2 and NaHCO3, respectively, in weakening the explosion overpressure, delaying the advance of the flame front position, decreasing the average flame propagation velocity, and reducing the receding times of the explosion flame front. The primary reason is that the ability of the anion Cl−to destroy OH· and H· radicals in chain explosion reactions is stronger than that of the anionHCO−3 and the ability of the cation Na+ to destroy OH· and H· radicals in explosion reactions is stronger than that of the cation Mg2+. -
砌体填充墙被广泛地应用于建筑物的外墙或钢筋混凝土框架内。但是, 由于它抗爆能力弱, 容易受到爆炸荷载的破坏, 且墙体的破坏与否对主体结构承受的爆炸荷载有一定影响[1], 因此, 填充墙的抗爆性能及其加固技术成为工程结构抗爆研究的重要方向。
近年来, 随着恐怖活动的增多, 为此开展了许多研究, 如:S.T.Dennis等[2]、S.C.Woodson等[3]进行了一系列比例为1/4的单向混凝土砌体墙的抗爆实验; C.D.Eamon等[4]、D.L.Thornburg[5]和J.S.Davidson等[6]进行了多次全尺寸的混凝土单向砌体墙抗爆实验; K.Martin[7]采用有限元分析方法研究了单向未加固砌体墙在面外静荷载作用下的失效模式; M.Wang等[8]运用有限元程序AUTODYN分别计算了实心砖墙和空心砖墙在外爆炸荷载作用下的破坏情况。
本文中, 先开展砌体填充墙的野外抗爆实验, 测得作用在墙上的爆炸荷载, 观测墙体的破坏形态与特征以及碎块的飞散和分布情况等, 然后利用LS-DYNA有限元软件, 对爆炸荷载作用下砌体填充墙实验模型的响应及损伤破坏进行详细分析与讨论。
1. 实验
砌体填充墙抗爆实验在野外进行, 模型采用浇注框架填充墙, 炸药在一定距离处爆炸, 测量不同装药量条件下墙体上的荷载及墙体变形和破坏情况。模型的平面布置如图 1所示, 该单层封闭框架模型为8×1跨, 层高1.5m, 在梁柱围成的框架处前面及两侧用砖墙填充, 以面向模型中心的墙体为实验墙, 两侧的砌体填充墙防止爆炸波绕射后对实验墙背面的影响。炸药在模型中心起爆, 实验模型如图 2所示。
1.1 模型制作
按设计图纸进行现场施工制作, 实验模型的基础、梁、板、柱整体浇注。砌体填充墙在模型建成进行填充砌筑, 墙的尺寸为2.00m×1.50m×0.19m。砖采用P型粘土空心砖, 尺寸为90mm×90mm×190mm, 强度等级为MU15, 砌砖上下错缝, 灰缝宽度为(10±2)mm, 砌墙砂浆采用M7.5水泥混合砂浆, 墙体与柱子间配拉结筋, 2根∅6mm沿柱高隔500mm布置, 拉筋伸入墙内500mm, 如图 3所示。
1.2 实验测量
测试内容包括墙面的压力、墙体的变形及砖墙破坏后的飞散情况。墙上的压力测点布置如图 4所示, 共8个测点, 所有的压力传感器均设置在铁管里, 铁管通过预埋砌筑在墙中。墙体的变形测点布置在墙背面, 共4个测点, 如图 5所示, 位移计固定在钢板上, 钢板锚固在两侧墙、顶板和地面上。
1.3 装药量
炸药安放在模型中心地面上, 装药为裸装TNT集团装药, 通过装药量变化实现不同比例距离上的爆炸, 各炮次的装药量和比例距离见表 1。
表 1 装药量Table 1. Explosive quantitiesNo. Q/kg Z/(m·kg-1/3) 1 0.2 10.00 2 3.9 3.72 3 3.9 3.72 4 8.6 2.87 5 34.2 1.81 6 4.8 3.48 7 4.8 3.38 8 4.8 3.48 9 4.8 3.48 10 10.7 2.66 11 21.2 2.12 12 30.0 1.89 2. 实验结果分析
2.1 墙上荷载
第1炮为试炮, 测得的墙上压力曲线如图 6(a)所示, 与TNT在空气中爆炸的经验曲线形状相同。第2炮后墙体没有破坏, 也没有发生明显变形, 图 6(b)是测得的经过滤波后的墙上压力曲线。从图 6可以看出, 冲击波先到达墙底部P5, 最后到达顶部P1。
表 2~3为第1、2炮各测点的冲击波的峰值压力、冲量。从表 2~3可以看出, 墙上的压力峰值和冲量都从墙底部到顶部、从中间到两边衰减。将实验结果与TM5-855-1[9]计算结果进行比较, 其中计算中假设墙体为刚体。可以看出, 实验测得的各测点的压力峰值、冲量与计算结果相差不大, 证实实验结果是可靠的。
表 2 第1炮各测点的压力峰值和冲量Table 2. The peak pressures and impulses of No.1测点 pm/Pa I/(MPa·ms) 实验 计算 实验 计算 P1 28.02 29.9 34.757 33.25 P2 28.80 30.3 42.193 33.75 P3 29.40 30.6 43.726 34.14 P4 30.00 31.0 45.560 34.40 P5 - 31.2 - 34.53 P6 29.41 30.6 45.706 34.09 P7 28.21 30.5 36.857 34.18 P8 29.73 30.3 39.543 33.74 表 3 第2炮各测点的压力峰值和冲量Table 3. The peak pressures and impulses of No.2测点 pm/kPa I/(MPa·ms) 实验 计算 实验 计算 P1 181.5 181 256.0 259.8 P2 - 185 - 271.8 P3 181.0 189 264.1 275.6 P4 - 191 - 278.2 P5 240.0 192 306.5 279.6 P6 231.0 188 303.4 275.2 P7 202.0 187 277.7 273.9 P8 218.5 185 235.4 271.9 2.2 墙的破坏
2.2.1第5炮
图 7是第5炮墙的破坏情况, 墙的变形明显, 迎爆面砖块表面发生剥落, 墙顶部与梁交界处全线透光, 这是因为实验墙是在框架浇注完后砌的, 墙顶部与梁交接处的砂浆是填塞进去的, 可能导致墙体顶部强度降低, 墙体的顶部破坏严重。墙体中上部砖块与砂浆分离发生内凹, 破坏模式类似于弯曲破坏, 右侧墙体整体内移2.5cm。墙体背面裂缝明显, 可以看到自上而下的裂缝, 裂缝以墙中心上下八字展开, 主要出现在砂浆处, 可见裂缝主要是由砂浆层的破坏引起的。从测点位移曲线(见图 7(c))可以看出, 最大位移发生在D2, 即最大变形发生在墙体的中部, 最大位移为88mm, 永久变形达到60mm, 其余3点的永久变形在30mm左右。
2.2.2第11炮
图 8是第11炮墙的破坏情况, 墙体破坏严重, 墙体中部内凹, 且在墙体上半部分出现30cm×30cm的孔洞, 右上部分与柱子连接的边界处出现孔洞, 拉结筋暴露。迎爆面的砖块有较多剥落散, 这是由爆炸冲击作用下墙体迎爆面砖块的局部被压碎引起的。由图 8(b)可以看出, 墙体背面砖块飞散和震塌现象严重, 抛射出的碎块以整块砖为主, 有约15块, 进一步表明墙的破坏主要是由砖与砖之间的砂浆层的破坏引起的。
2.2.3第12炮
图 9是第12炮墙的破坏情况, 墙体几乎全部破坏, 墙体迎爆面的地面上有少量砖碎片, 墙背面碎片很多, 且抛射距离很远, 最远距离达到34.2m。墙体右侧与柱之间的拉结筋暴露在外, 墙体左侧与柱子连接处发生松动。墙体施工工艺、边界条件以及重力的共同作用, 使墙体上部分破坏严重。
2.3 碎片分布
图 10为在不同药量作用下墙破坏后碎片的分布情况, 墙体的破坏形态与荷载的大小有关, 当药量较小时(见图 10(a)), 砖墙未形成孔洞, 仅背面有砖块震塌, 随着药量的增加, 墙体的破坏程度逐渐增大, 产生的碎片逐渐增多, 碎片的飞散距离也逐渐增远(见图 10(b)~(d)), 随着炮次的增多, 碎片数量增多, 飞散距离增远。实际上, 碎片的实际抛射距离跟落地后的反弹有关, 碎片与地面的冲撞问题非常复杂, 受各种不确定因素影响, 如地面刚度、平整度等。这里仅对实验得到的图片做分析。
3. 数值模拟
在野外实验分析的基础上, 利用LS-DYNA有限元软件, 建立精细化的有限元分析模型, 模拟填充墙在爆炸荷载作用下的响应和损伤破坏, 进一步分析砌体填充墙的抗爆特性、破坏形态和影响因素。
3.1 材料模型及参数的确定
在实验室对采用的砖和砂浆进行抗压测试, 得到砖的抗压强度为15.7MPa, 砌墙砂浆的抗压强度为7.2MPa。材料模型、参数以及墙的破坏准则、材料的失效准则见文献[10]。
3.2 有限元模型的建立和验证
3.2.1精细化有限元模型的建立
采用LS-DYNA有限元软件进行建模, 模型尺寸与实验墙尺寸相同, 将砖和砂浆分别采用不同的材料建立, 根据对称性取一半, 如图 11(a)所示。砖和砂浆均采用8节点6面体实体单元, 其中砖的单元尺寸为0.025m, 砂浆单元尺寸为0.005m, 拉筋采用Beam单元, 单元尺寸为0.025m, 砖、砂浆和钢筋之间均采用共节点, 整个有限元模型共有节点1 024 982个, 划分实体单元529 614个, 梁单元1 132个, 有限元网格图见图 11(b)~(c)所示。实验中TNT炸药离砖墙距离为5.871m, 通过改变药量实现比例距离的变化。
3.2.2特征点的动力响应
根据以上分析, 实验中炸药爆炸作用在墙上的荷载与TM5-855-1计算结果较好吻合, 因此采用LS-DYNA中*LOAD_BLAST关键字加载方法, 用CONWEP爆炸加载[9]模拟实验中炸药的爆炸情况。第3炮后, 墙正面顶部与梁连接处有细微裂缝, 图 12是各测点位移曲线的数值模拟结果和实验结果的对比, 墙的最大位移发生在D1, 实验测得的最大位移为4.39mm, 永久变形为2.23mm, 数值模拟的最大位移为5.09mm, 永久位移为1.3m, 两者结果基本一致。这表明, 采用*LOAD_BLAST关键字模拟墙上爆炸荷载的方法, 既能满足计算精度的要求, 也可以大大提高计算效率, 所以本文的数值模拟方法切实可行。
3.3 边界条件的影响
实验墙的左右两侧与柱子之间设置拉结筋, 通过数值模拟, 对比有无拉结筋时墙体的破坏模式的差异, 如图 13所示。墙体两侧有拉结筋时, 墙体的破坏主要集中在墙体的中部(见图 13(a))。无拉结筋的墙体破坏模式有些类似于整体弯曲破坏(见图 13(b))。有拉筋的墙体破坏区域比无拉结筋的墙体破坏区域小, 所以拉筋的存在可以增强墙的抗爆能力, 减少碎片的产生。
3.4 砌体填充墙破坏等级划分
实验时对同一面墙体进行了多次爆炸作用, 有损伤累积效应, 很难判别墙体的破坏形态在什么药量下产生。结合实验结果, 根据文献[10]中墙体的破坏等级划分, 确定不同等级实验墙的破坏药量。
通过数值模拟得出, 当药量Q < 15kg时, 墙的破坏程度为轻微破坏, 墙体仅出现细微裂缝; 当15kg < Q < 40kg时, 墙体发生中度破坏, 图 14为Q=37kg时墙的破坏情况, 由于墙体顶部与梁之间无拉结筋, 墙体会先在顶端与梁交界处出现较大横向裂缝, 再沿灰缝产生竖向不规则的裂缝, 墙体变形明显, 在墙体变形过程中的等效塑形应变分布图(见图 14(a))中, 红色区域为变形和裂缝较集中的地方, 在裂缝分布图(见图 14(b))中, 灰缝不连续部分为产生的裂缝。与对应的实验破坏情况(见图 8)比较, 数值模拟所得墙体的破坏形态与实验现象较好吻合。
数值模拟中, 当40kg < Q < 50kg时, 墙体发生严重破坏, 墙体发生多处不规则裂缝, 外界不大的扰动也有可能导致墙体的倒塌, 如图 15(a)中红色部分为裂缝。冲击波作用于墙上, 墙体中部弯矩最大, 且墙的两侧有拉筋, 因此墙体的破坏主要集中在墙的中部, 灰缝截面由于剪切滑移发生破坏, 使砖与砂浆分离, 在冲击波和重力作用下, 墙体背面部分产生砖块震塌。实验第8炮的墙体破坏如图 15(b)所示, 数值模拟结果与实验结果完全吻合。
当Q > 50kg时, 墙发生飞散。图 16为Q=58kg时墙的破坏过程, 墙体在爆炸荷载和重力联合作用下发生整体飞散破坏, 墙体中上部先发生破坏飞散, 背部砖块普遍震塌, 随着墙体中上部砖块的飞散, 墙体顶部的砖块也发生脱落和飞散, 仅留下下部分和侧面部分墙体没有倒塌。实验的破坏(见图 9)中, 墙的破坏范围很大, 数值模拟结果基本如实反映了实验观测现象。
本文中所确定不同破坏等级时的药量只是针对实验墙, 如果墙体尺寸发生变化, 针对不同的破坏等级所需的药量也会发生变化。
4. 结论
采用砌体填充墙抗爆的野外实验, 并与数值模拟相结合, 对填充墙的抗爆特性和破坏机制进行了研究, 主要结论有:
(1) 在外爆炸作用下, 墙上各点的冲击波压力峰值、冲量按照从墙底部到顶部、从中间到两边衰减, 实验结果与TM5-855-1计算结果较好吻合。
(2) 在外爆炸作用下, 墙体的裂缝不规则发展, 主要由砂浆层的破坏引起, 墙体的破坏先在背部发生震塌现象, 随着药量逐渐增大, 墙体发生飞散, 产生的碎片数量逐渐增多, 抛射距离也逐渐增远。
(3) 墙体的边界条件对墙体的破坏模式影响很大, 无拉结筋时墙体易发生整体弯曲破坏, 拉筋的存在可以增强墙的抗爆能力, 减少碎片的产生。
(4) 通过数值模拟, 确定了实验墙不同破坏程度的药量。当药量Q < 15kg时, 墙体发生轻度破坏; 当15kg < Q < 40kg时, 墙体发生中度破坏; 当40kg < Q < 50kg时, 墙体发生严重破坏; 当Q > 50kg时, 墙体发生飞散。
-
表 1 NaCl超细水雾作用下最大爆炸超压的变化
Table 1. Changes of the maximum explosion overpressures under the suppression of ultrafine water mists containing NaCl
w/% V/mL pmax/kPa Δpmax/kPa η/% w/% V/mL pmax/kPa Δpmax/kPa η/% 0 4.2 18.7 0 8.4 15.4 2 17.0 1.7 9.1 2 13.6 1.8 11.7 4 15.2 3.5 18.7 4 12.8 2.6 16.9 6 14.5 4.2 22.5 6 10.8 4.6 29.9 8 13.9 4.8 25.7 8 9.9 5.5 35.7 表 2 含NaHCO3超细水雾作用下最大爆炸超压的变化
Table 2. Changes of the maximum explosion overpressure under the suppression of ultrafine water mists containing NaHCO3
w/% V/mL pmax/kPa Δpmax/kPa η/% w/% VL/mL pmax/kPa Δpmax/kPa η/% 0 4.2 18.7 0 8.4 15.4 2 18.6 0.1 0.5 2 15.0 0.4 2.5 4 18.3 0.4 2.1 4 14.3 1.1 7.1 6 17.7 1.0 5.3 6 13.5 1.9 12.3 8 16.6 2.1 11.2 8 12.8 2.6 16.9 表 3 MgCl2超细水雾作用下最大爆炸超压的变化
Table 3. Changes of the maximum explosion overpressures under the suppression of ultrafine water mists containing MgCl2
w/% V/mL pmax/kPa Δpmax/kPa η/% w/% V/mL pmax/kPa Δpmax/kPa η/% 0 4.2 18.7 0 8.4 15.4 2 17.3 1.4 7.5 2 15.3 0.1 0.6 4 16.1 2.4 13.9 4 14.5 0.9 5.8 6 15.7 3.0 16.0 6 13.0 2.4 15.6 8 14.0 4.7 25.1 8 11.7 3.7 24.0 表 4 不同工况下3种盐类超细水雾作用下火焰峰面到达管道末端的时间
Table 4. Times for the flame front to arrive at the terminal end of pipe B affected by three ultrafine water mists with different salts under different working conditions
工况 tter/ms Δt/ms ξ/% 工况 tter/ms Δt/ms ξ/% 工况 tter/ms Δt/ms ξ/% 无水雾 5.27 无水雾 5.27 无水雾 5.27 0%-NaCl 8.06 2.79 0%-MgCl2 8.06 2.79 0%-NaHCO3 8.06 2.79 2%-NaCl 11.16 5.89 38.5 2%-MgCl2 8.68 3.41 7.7 2%-NaHCO3 8.68 3.41 7.7 4%-NaCl 12.09 6.82 50.0 4%-MgCl2 12.40 7.13 53.8 4%-NaHCO3 9.30 4.03 15.4 6%-NaCl 14.88 9.61 84.6 6%-MgCl2 13.64 8.37 69.2 6%-NaHCO3 10.23 4.96 26.9 8%-NaCl 17.98 12.71 123.0 8%-MgCl2 15.19 9.92 88.5 8%-NaHCO3 12.40 7.13 53.8 -
[1] 毛宗强. 氢能: 我国未来的清洁能源 [J]. 化工学报, 2004, 55(S1): 296–302.MAO Z Q. Hydrogen: a future clean energy carrier in China [J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 296–302. [2] RAZUS D, MOVILEANU C, BRINZEA V, et al. Explosion pressures of hydrocarbon-air mixtures in closed vessels [J]. Journal of Hazardous Materials, 2006, 135(1−3): 58–65. DOI: 10.1016/j.jhazmat.2005.10.061. [3] KURDYUMOV V N, MATALON M. Flame acceleration in long narrow open channels [J]. Proceedings of the Combustion Institute, 2013, 34(1): 865–872. DOI: 10.1016/j.proci.2012.07.045. [4] WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. DOI: 10.1016/j.jlp.2016.05.021. [5] 罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08. [6] 陈鹏, 李艳超, 黄福军, 等. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟 [J]. 爆炸与冲击, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.CHEN P, LI Y C, HUANG F J, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06. [7] 周宁, 王文秀, 张国文, 等. 障碍物对丙烷-空气爆炸火焰加速的影响 [J]. 爆炸与冲击, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0109.ZHOU N, WANG W X, ZHANG G W, et al. Effect of obstacles on flame acceleration of propane-air explosion [J]. Explosion and Shock Waves, 2018, 38(5): 1106–1114. DOI: 10.11883/bzycj-2017-0109. [8] ZHANG P P, ZHOU Y H, CAO X Y, et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog [J]. Safety Science, 2014, 62: 1–7. DOI: 10.1016/j.ssci.2013.07.027. [9] ADIGA K C, HATCHER JR R F, SHEINSON R S, et al. A computational and experimental study of ultra fine water mist as a total flooding agent [J]. Fire Safety Journal, 2007, 42(2): 150–160. DOI: 10.1016/j.firesaf.2006.08.010. [10] PEI B, YU M G, CHEN L W, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 546–553. DOI: 10.1016/j.jlp.2016.02.005. [11] XU H L, LI Y, ZHU P, et al. Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 815–820. DOI: 10.1016/j.jlp.2013.02.014. [12] ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 851–861. DOI: 10.1016/j.jlp.2013.02.013. [13] ZHOU Y H, BI M S, QI F. Experimental research into effects of obstacle on methane-coal dust hybrid explosion [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(1): 127–130. DOI: 10.1016/j.jlp.2011.07.003. [14] BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: Part 2: mitigation of vented deflagrations [J]. International Journal of Hydrogen Energ, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029. [15] 裴蓓, 韦双明, 陈立伟, 等. CO2-超细水雾对CH4/air初期爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.PEI B, WEI S M, CHEN L W, et al. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/air [J]. Explosion and Shock Waves, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147. [16] 纪虹, 杨克, 黄维秋, 等. 超细水雾协同甲烷氧化菌降解与抑制甲烷爆炸的实验研究 [J]. 化工学报, 2017, 68(11): 4461–4468. DOI: 10.11949/j.issn.0438-1157.20170568.JI H, YANG K, HUANG W Q, et al. Methane degradation and explosion inhibition by using ultrafine water mist containing methane oxidative bacteria-inorganic salt [J]. CIESC Journal, 2017, 68(11): 4461–4468. DOI: 10.11949/j.issn.0438-1157.20170568. [17] GU R, WANG X S, XU H L. Experimental study on suppression of methane explosion with ultra-fine water mist [J]. Fire Safety Science, 2010, 19(2): 51–59. DOI: 10.3969/j.issn.1004-5309.2010.02.001. [18] MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames [J]. Combustion and Flame, 2006, 144(1−2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003. [19] 杨克, 纪虹, 邢志祥, 等. 含草酸钾的超细水雾抑制甲烷爆炸的特性 [J]. 化工学报, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.YANG K, JI H, XING Z X, et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate [J]. CIESC Journal, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671. [20] JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58: 221–225. DOI: 10.1016/j.firesaf.2013.03.003. [21] 余明高, 安安, 赵万里, 等. 含添加剂细水雾抑制瓦斯爆炸有效性试验研究 [J]. 安全与环境学报, 2011, 11(4): 149–153. DOI: 10.3969/j.issn.1009-6094.2011.04.034.YU M G, AN A, ZHAO W L, et al. On the inhibiting effectiveness of the water mist with additives to the gas explosion [J]. Journal of Safety and Environment, 2011, 11(4): 149–153. DOI: 10.3969/j.issn.1009-6094.2011.04.034. [22] 余明高, 杨勇, 裴蓓, 等. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.YU M G, YANG Y, PEI B, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07. [23] GAN B, LI B, JIANG H P, et al. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives [J]. Journal of Hazardous Materials, 2018, 351: 346–355. DOI: 10.1016/j.jhazmat.2018.03.017. [24] 陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006, 31(5): 603–606. DOI: 10.3321/j.issn:0253-9993.2006.05.012.CHEN X K, LIN Y, LUO Z M, et al. Experiment study on controlling gas explosion by water-depressant [J]. Journal of China Coal Society, 2006, 31(5): 603–606. DOI: 10.3321/j.issn:0253-9993.2006.05.012. [25] CAO X Y, REN J J, BI M S, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist [J]. Journal of Hazardous Materials, 2017, 324: 489–497. DOI: 10.1016/j.jhazmat.2016.11.017. [26] CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016. [27] CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/j.jlp.2016.06.012. [28] NFPA. NFPA 750 Standard for the installation of water mist fire protection systems [S]. Quincy, MA: National Fire Protection Association, 2000. [29] 秦俊, 廖光煊, 王喜世, 等. 细水雾抑制火旋风的实验研究 [J]. 自然灾害学报, 2002, 11: 60–65. DOI: 10.3969/j.issn.1004-4574.2002.04.010.QIN J, LIAO G X, WANG X S, et al. Experimental study on extinguishment of fire whirlwind by water mist [J]. Journal of Natural Disasters, 2002, 11: 60–65. DOI: 10.3969/j.issn.1004-4574.2002.04.010. [30] AKIRA Y, TOICHIRO O, WATARU E, et al. Experimental and numerical investigation of flame speed retardation by water mist [J]. Combustion and Flame, 2015, 162: 1772–1777. DOI: 10.1016/j.combustflame.2014.11.038. [31] 邓军, 田志辉, 罗振敏, 等. Mg(OH)2/CO2抑爆瓦斯实验研究 [J]. 煤矿安全, 2013, 44: 4–6. DOI: 10.13347/j.cnki.mkaq.2013.10.014.DENG J, TIAN Z H, LUO Z M, et al. Experimental research on suppressing gas explosion by Mg(OH)2/CO2 [J]. Safety in Coal Mines, 2013, 44: 4–6. DOI: 10.13347/j.cnki.mkaq.2013.10.014. 期刊类型引用(10)
1. 梁冠军,刘晓东,尤超,张涛. 聚脲弹性体加固砌体墙抗爆试验安全风险评估. 佳木斯大学学报(自然科学版). 2023(03): 145-150 . 百度学术
2. 谭英华,王国梁,李阳,胡亚超,席丰. 脉冲荷载作用下承重砌体墙动力行为分析. 山东建筑大学学报. 2023(04): 10-18 . 百度学术
3. 陈德,吴昊,方秦. 爆炸荷载作用下单向砌体填充墙动态响应计算方法. 建筑结构学报. 2023(10): 197-210 . 百度学术
4. 陈德,吴昊,徐世林,韦建树. 单向砌体填充墙激波管试验和动力行为分析. 爆炸与冲击. 2023(08): 136-154 . 本站查看
5. 尚雨露,徐轩,张帝,杨军. CONWEP与流固耦合爆炸加载差异性及砌体墙动力响应特征. 兵工学报. 2023(12): 3897-3908 . 百度学术
6. 许林峰,陈力,李展,岳承军. 聚脲加固砖填充墙抗爆性能的试验和分析方法研究. 爆炸与冲击. 2022(07): 126-137 . 本站查看
7. 王丽琼,肖杰. 砌体填充墙防爆性能及临界破坏状态的数值模拟. 安全与环境学报. 2022(05): 2461-2468 . 百度学术
8. 胡嘉辉,吴昊,方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟. 振动与冲击. 2021(09): 1-11 . 百度学术
9. 周清,齐麟,丁杰. 构造柱对承重砌体墙抗爆性能的影响. 工业建筑. 2021(03): 42-49+21 . 百度学术
10. 彭培,李展,张亚栋,陈力,方秦. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能. 爆炸与冲击. 2020(03): 110-123 . 本站查看
其他类型引用(13)
-