Consumption work of GH4169 spacer plates in positive impact by blunt rigid projectiles
-
摘要: 在380~680 m/s的弹体初速范围内,开展了直径8 mm钨球正冲击GH4169间隔靶实验,测得弹体初速、余速及靶板形貌,明显看出第1层板挠度较小,主要表现为剪切破坏,并产生了杯状挤凿块,第3层板挠度较大,主要表现为拉伸破坏。提出了间隔靶消耗功计算公式,结合剪切冲塞模型和建立的挤凿块速度模型计算了刚性钝头弹体冲击间隔靶中各层板的消耗功。结果表明,第2~3层板的单位面密度消耗功远高于相同面密度的第1层板,这与各层板的变形和失效形式密切相关。消耗功分析可用于定量描述间隔靶中各层板的抗侵彻性能。Abstract: At the initial velocity range of 380~680 m/s, positive impact on GH4169 spacer plates by 8 mm diameter tungsten spheres was performed, measuring the initial velocity, residual velocity and deflection. It is obvious that the first plate is mainly subjected to shear damage and ejected cup-shaped plug, the third plate is mainly subjected to tensile failure, and the deflection of the third plate is significantly greater than the first plate. The calculation formula for the consumption work of the spacer plates is established, the consumption work of each plates impacted by projectiles is calculated by combining the shear plugging model and the plug velocity model. The results show that the unit area density consumption work of the second and third plates is much higher than that of the first plate, which is closely related to the deformation and failure modes of the plates. Consumption work can be used to quantitatively describe the ballistic resistance of each plate.
-
Key words:
- spacer plates /
- consumption work /
- plug velocity /
- ballistic resistance /
- ballistic limit
-
表 1 GH4169(固溶处理)的物理和力学性能[8]
Table 1. Physical and mechanical properties of GH4169 (solution treatment)
执行标准 ρ/(g·cm−3) μ Tm/°C σb/MPa σs0.2/MPa E/GPa G/GPa H/HRB δ5/% GB/T 14992~2005 8.24 0.3 1260~1320 965 550 205 79.24 ≤102 ≥30 表 2 直径8 mm钨球冲击GH4169间隔靶实验结果
Table 2. Experimental results of 8 mm diameter tungsten ball impacting GH4169 spacer plates
实验 mp/g h1/mm h2/mm h3/mm vi/(m·s−1) vr/(m·s−1) Z1/mm Z2/mm Z3/mm 贯穿类型 1 4.69 3.14 1.07 3.18 510.9 5.87 7.09 6.41 未贯穿 2 4.70 3.14 1.07 3.18 517.7 2.18 7.72 7.30 未贯穿 3 4.69 3.14 1.07 3.18 541.4 3.28 8.20 8.18 未贯穿 4 4.70 3.14 1.07 3.18 569.4 1.91 7.83 7.98 未贯穿 5 4.70 3.12 1.10 3.10 566.7 3.87 8.35 10.92 未贯穿 61) 4.70 3.14 1.07 3.18 563.6 8.23 12.18 未贯穿 7 4.70 3.18 1.05 3.14 562.6 2.98 6.68 9.78 未贯穿 82) 4.70 3.18 1.05 3.14 685.7 2.91 5.84 15.86 贯穿 9 4.70 3.16 1.07 3.13 388.5 1.67 2.44 2.40 未贯穿 10 4.69 3.16 1.07 3.13 587.8 0.88 8.61 13.74 未贯穿 11 4.70 3.16 1.07 3.13 643.4 199.7 2.01 9.01 13.47 贯穿 12 4.69 3.16 1.07 3.13 618.4 158.4 1.00 7.64 13.85 贯穿 133) 4.70 3.13 1.09 3.15 627.1 1.45 7.48 未贯穿 14 4.72 3.13 1.09 3.15 641.0 0.84 9.16 14.24 未贯穿 15 4.69 3.13 1.09 3.15 673.0 200.4 0.89 9.94 6.81 贯穿 16 4.71 3.13 1.09 3.15 647.2 132.1 1.09 8.71 贯穿 17 4.70 3.16 1.07 3.13 668.4 200.9 2.25 8.51 13.52 贯穿 1) 弹托嵌入第1层板;2) 弹体余速未测到;3) 弹体嵌入第3层板。 表 3 根据实验数据拟合得到的Recht-Ipson模型参数
Table 3. Parameters in the Recht-Ipson model obtained by fitting experiments
拟合曲线 v50/(m·s−1) a p v50a 603.1 0.42 4.49 v50b 644.1 0.40 5.39 表 4 依据实验数据获得的模型参数
Table 4. Model parameters obtained from experimental data
弹体类型 k vsrjump/(m·s−1) 平头弹体 1.61 37.21 半球形头弹体 0.99 124.28 球形弹体 0.93 160.52 -
[1] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program [C] // Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: AIAA Press, 2008: 1-13. DOI: 10.2514/6.2008-2540. [2] 曾慧, 白菡尘, 朱涛. X-51A超燃冲压发动机及飞行验证计划 [J]. 导弹与航天运载技术, 2010(1): 57–61. DOI: 10.3969/j.issn.1004-7182.2010.01.012.ZENG H, BAI H C, ZHU T. X-51A scramjet engine flight and demonstration program [J]. Missiles and Space Vehicles, 2010(1): 57–61. DOI: 10.3969/j.issn.1004-7182.2010.01.012. [3] ZHANG W, DENG Y F, CAO Z S, et al. Experimental investigation on the ballistic performance of monolithic and layered metal plates subjected to impact by blunt rigid projectiles [J]. International Journal of Impact Engineering, 2012, 49: 115–129. DOI: 10.1016/j.ijimpeng.2012.06.001. [4] 肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨: 哈尔滨工业大学, 2010: 45−51. [5] BEN-DOR G, DUBINSKY A, ELPERIN T. New results on ballistic performance of multi-layered metal shields: review [J]. Theoretical and Applied Fracture Mechanics, 2017, 88: 1–8. DOI: 10.1016/j.tafmec.2016.11.002. [6] DEY S, BØRVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. DOI: 10.1016/j.ijsolstr.2007.03.005. [7] 任杰, 徐豫新, 王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验 [J]. 爆炸与冲击, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.REN J, XU Y X, WANG S S. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08. [8] 庄景云, 杜金辉, 邓群. 变形高温合金GH4169组织与性能[M]. 北京: 冶金工业出版社, 2011: 13−26. [9] 高润芳, 韩峰, 马晓青, 等. 几种钨合金破片垂直侵彻装甲钢板极限穿透速度研究 [J]. 弹箭与制导学报, 2005, 25(4): 57–59, 62. DOI: 10.3969/j.issn.1673-9728.2005.04.020.GAO R F, HAN F, MA X Q, et al. Investigation of tungsten fragments of different shape penetrating armour plate [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 57–59, 62. DOI: 10.3969/j.issn.1673-9728.2005.04.020. [10] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. DOI: 10.1016/S0734-743X(01)00018-5. [11] 王海福, 刘志雄, 冯顺山. 钢球侵彻钛合金靶板弹道极限速度 [J]. 北京理工大学学报, 2003, 23(2): 162–164. DOI: 10.3969/j.issn.1001-0645.2003.02.008.WANG H F, LIU Z X, FENG S S. Ballistics limit velocity for spherical steel fragments penetratig titanium-alloy target plates [J]. Transactions of Beijing Institute of Technology, 2003, 23(2): 162–164. DOI: 10.3969/j.issn.1001-0645.2003.02.008. [12] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566. [13] 钱伟长. 穿甲力学[M]. 北京: 国防工业出版社, 1984: 280−288. [14] ANDERSON Jr C E. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018. [15] 司马玉洲, 肖新科, 王要沛, 等. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究 [J]. 振动与冲击, 2017, 36(11): 1–7, 13. DOI: 10.13465/j.cnki.jvs.2017.11.001.SIMA Y Z, XIAO X K, WANG Y P, et al. Tests and numerical simulation for anti-penetrating behavior of a high strength 7A04-T6 aluminium alloy plate against a blunt projectile’s impact [J]. Journal of Vibration and Shock, 2017, 36(11): 1–7, 13. DOI: 10.13465/j.cnki.jvs.2017.11.001. [16] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9−10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1. [17] BØRVIK T, HOPPERSTAD O S, LANGSETH M, et al. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates [J]. International Journal of Impact Engineering, 2003, 28(4): 413–464. DOI: 10.1016/S0734-743X(02)00072-6. [18] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part I: experimental study [J]. International Journal of Impact Engineering, 2002, 27(1): 19–35. DOI: 10.1016/S0734-743X(01)00034-3. [19] CZARNECKI G J. Estimation of the v50 using semi-empirical (1-point) procedures [J]. Composites Part B: Engineering, 1998, 29(3): 321–329. DOI: 10.1016/s1359-8368(97)00032-2. [20] 陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316–351. DOI: 10.6052/1000-0992-2009-3-J2007-090.CHEN X W. Advances in the penetration/perforation of rigid projectiles [J]. Advances in Mechanics, 2009, 39(3): 316–351. DOI: 10.6052/1000-0992-2009-3-J2007-090. [21] CHEN X W, LI Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile [J]. International Journal of Impact Engineering, 2003, 28(5): 513–536. DOI: 10.1016/S0734-743X(02)00077-5. [22] 陈小伟, 杨云斌, 路中华. 带前舱物的钝头弹对金属靶的正穿甲分析 [J]. 爆炸与冲击, 2006, 26(4): 294–302. DOI: 10.11883/1001-1455(2006)04-0294-09.CHEN X W, YANG Y B, LU Z H. Perforation of metallic plates struck by a blunt projectile with a nose-cabin-column [J]. Explosion and Shock Waves, 2006, 26(4): 294–302. DOI: 10.11883/1001-1455(2006)04-0294-09. [23] ZHAO Y P. Prediction of structural dynamic plastic shear failure by Johnson’s damage number [J]. Forschung im Ingenieurwesen, 1998, 63(11/12): 349–352. DOI: 10.1007/PL00010753.