Dynamic tensile response and failure mechanism of hi-lock bolt joint
-
摘要: 飞机坠撞过程中结构的变形模式和吸能对乘员保护具有重要意义,而连接结构的载荷传递和失效形式是影响飞机结构变形的重要因素之一。为了获取航空高锁螺栓连接件在坠撞载荷下的动态响应和失效机理,基于抗剪型平头高锁螺栓设计了2种材料(2024-T3和7050-T7451)的单钉单搭接连接件,利用高速液压伺服材料试验机进行4种速度(0.01、0.10、1.00和3.00 m/s)下的拉伸测试,得到连接件的动态响应、极限载荷、能量吸收和失效模式随速度的变化规律,并分析了连接件的失效机理。结果表明,连接件的失效模式受母材和高锁螺栓/螺母材料强度影响较大,而受加载速度影响较小;当速度从0.01 m/s增加到3.00 m/s时,2024-T3连接件的极限载荷和能量吸收分别增加了2.17%和34.43%,7050-T7451连接件的极限载荷和能量吸收分别增加了5.53%和6.58%。Abstract: The deformation mode and energy absorption property of aircraft sub-structure are of great significance for occupant protection during aircraft crash. The load transfer and failure mode of joint structures are one of important factors affecting aircraft structural deformation. This paper tries to study the dynamic failure behavior of aviation of hi-lock bolt joints under impact loads. Based on the shear resistance hi-lock bolt, the single-bolt single lap joints with two kinds of base metals (2024-T3 and 7050-T7451) were designed. The dynamic tensile tests of the joints were carried out by a high-speed material testing machine under four loading velocities, 0.01、0.10、1.00 and 3.00 m/s. The dynamic response, the ultimate load, the energy absorption and the failure mode of hi-lock bolt joints were measured and analyzed. The results show that the failure mode of the joints is greatly affected by the material strength of the base metal and the high lock bolt / nut, but less affected by the loading speed; as increasing the speed from 0.01 m/s to 3 m/s, the ultimate load and the energy absorption of 2024-T3 joints increase by 2.17% and 34.43% respectively, and the ultimate load and the energy absorption of 7050-T7451 joints increase by 5.53% and 6.58% respectively.
-
Key words:
- joints /
- impact load /
- failure mode /
- energy absorption /
- hi-lock
-
材料 密度/(g·cm−3) 弹性模量/GPa 屈服强度/MPa 抗拉强度/MPa 伸长率/% 备注 2024-T3 2.8 72 310 440 17.7 母材 7050-T7451 2.8 72 470 530 14.1 母材 7075-T73 2.8 72 395 475 7.0 高锁螺母 TC4 4.4 109 860 930 10.0 高锁螺栓 表 2 不同速度下连接件极限载荷和初始失效位移统计
Table 2. Statistics of ultimate load and initial failure displacement of joints under different loading velocities
序号 连接件 速度/(m·s−1) 极限载荷/kN 极限载荷增长率/% 初始失效位移/mm 初始失效位移增长率/% 1 A类 0.01 10.61 − 5.17 − 2 0.10 10.66 0.47 5.19 0.39 3 1.00 10.77 1.51 5.23 1.16 4 3.00 10.84 2.17 6.40 23.79 6 B类 0.01 12.30 − 5.61 − 7 0.10 12.78 3.90 5.65 0.71 8 1.00 12.87 4.63 5.68 1.25 9 3.00 12.98 5.53 5.73 2.14 表 3 连接件失效模式
Table 3. Failure modes of joints
连接件 失效模式 v=0.01 m/s v=0.10 m/s v=1.00 m/s v=3.00 m/s A类 TF+FP/FP/FP FP/FP/FP TF+FP/FP/FP FP/FP/FP B类 SOF/SOF/TF TF/SOF/SOF SOF/SOF/SOF SOF/SOF/SOF 注:FP表示螺栓头部拉脱失效,TF表示母材拉伸失效,TF+FP表示二者耦合失效,SOF表示螺栓/螺母拔出失效。 -
[1] 刘风雷, 徐鑫良, 孙文东. 复合材料结构用紧固件技术 [J]. 宇航总体技术, 2018, 2(4): 8–12.LIU F L, XU X L, SUN W D. The fastener technology for composite structures [J]. Astronautical Systems Engineering Technology, 2018, 2(4): 8–12. [2] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Stress analysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance [J]. Composite Structures, 2012, 94(3): 1038–1051. DOI: 10.1016/j.compstruct.2011.10.004. [3] MCCARTHY C T, GRAY P J. An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints [J]. Composite Structures, 2011, 93(2): 287–298. DOI: 10.1016/j.compstruct.2010.09.017. [4] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part I-model development and validation [J]. Composite Structures, 2005, 71(2): 140–158. DOI: 10.1016/j.compstruct.2004.09.024. [5] 魏景超. 复合材料结构新型紧固件连接强度与失效机理[D]. 西安: 西北工业大学, 2014: 65-114. [6] ADAM L, BOUVET C, CASTANIÉ B, et al. Discrete ply model of circular pull-through test of fasteners in laminates [J]. Composite Structures, 2012, 94(10): 3082–3091. DOI: 10.1016/j.compstruct.2012.05.008. [7] IRISARRI F X, LAURIN F, CARRERE N, et al. Progressive damage and failure of mechanically fastened joints in CFRP laminates- Part II: failure prediction of an industrial junction [J]. Composite Structures, 2012, 94(8): 2278–2284. DOI: 10.1016/j.compstruct.2011.07.005. [8] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估 [J]. 航空学报, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182. [9] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究 [J]. 航空学报, 2012, 33(12): 2202–2210.LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202–2210. [10] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性 [J]. 航空学报, 2019, 40(9): 202–214. DOI: 10.7527/S1000-6893.2019.22907.FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 202–214. DOI: 10.7527/S1000-6893.2019.22907. [11] ZHU X F, FENG Y W, XUE X F, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold [J]. International Journal of Crashworthiness, 2017, 22(4): 347–364. DOI: 10.1080/13588265.2016.1258957. [12] LANGRAND B, DELETOMBE É, MARKIEWICZ É, et al. Numerical approach for assessment of dynamic strength for riveted joints [J]. Aerospace Science and Technology, 1999, 3(7): 431–446. DOI: 10.1016/S1270-9638(99)00103-0. [13] LANGRAND B, MARKIEWICZ E, DELETOMBE E, et al. Identification of nonlinear dynamic behavior and failure for riveted joint assemblies [J]. Shock and Vibration, 2000, 7(3): 121–138. DOI: 10.1155/2000/632896. [14] LANGRAND B, DELETOMBE E, MARKIEWICZ E, et al. Riveted joint modeling for numerical analysis of airframe crashworthiness [J]. Finite Elements in Analysis and Design, 2001, 38(1): 21–44. DOI: 10.1016/S0168-874X(01)00050-6. [15] LANGRAND B, PATRONELLI L, DELETOMBE E, et al. Full scale experimental characterisation for riveted joint design [J]. Aerospace Science and Technology, 2002, 6(5): 333–342. DOI: 10.1016/S1270-9638(02)01175-6. [16] BIRCH R S, ALVES M. Dynamic failure of structural joint systems [J]. Thin-Walled Structures, 2000, 36(2): 137–154. DOI: 10.1016/S0263-8231(99)00040-3. [17] 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能 [J]. 航空学报, 2019, 40(1): 284–296. DOI: 10.7527/S1000-6893.2018.22484.WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 284–296. DOI: 10.7527/S1000-6893.2018.22484. [18] 解江, 白春玉, 舒挽, 等. 航空铆钉动态加载失效实验 [J]. 爆炸与冲击, 2017, 37(5): 879–886. DOI: 10.11883/1001-1455(2017)05-0879-08.XIE J, BAI C Y, SHU W, et al. Dynamic loading failure experiment of aeronautic rivet [J]. Explosion and Shock Waves, 2017, 37(5): 879–886. DOI: 10.11883/1001-1455(2017)05-0879-08. [19] LIU X C, XI X L, BAI C Y, et al. Dynamic response and failure mechanism of Ti-6AL-4V hi-lock bolts under combined tensile-shear loading [J]. International Journal of Impact Engineering, 2019, 131: 140–151. DOI: 10.1016/j.ijimpeng.2019.04.025. [20] 惠旭龙, 刘小川, 白春玉, 等. 复合材料结构用高锁螺栓的动态复合加载失效特性 [J]. 兵工学报, 2019, 40(10): 2142–2150. DOI: 10.3969/j.issn.1000-1093.2019.10.021.HUI X L, LIU X C, BAI C Y, et al. Failure characteristics of high-lock bolts for composite structures under dynamic combined loading [J]. Acta Armamentarii, 2019, 40(10): 2142–2150. DOI: 10.3969/j.issn.1000-1093.2019.10.021. [21] GER G S, KAWATA K, ITABASHI M. Dynamic tensile strength of composite laminate joints fastened mechanically [J]. Theoretical and Applied Fracture Mechanics, 1996, 24(2): 147–155. DOI: 10.1016/0167-8442(95)00038-0. [22] LI Q M, MINES R A W, BIRCH R S. Static and dynamic behaviour of composite riveted joints in tension [J]. International Journal of Mechanical Sciences, 2001, 43(7): 1591–1610. DOI: 10.1016/S0020-7403(00)00099-0. [23] HEIMBS S, SCHMEER S, BLAUROCK J, et al. Static and dynamic failure behaviour of bolted joints in carbon fibre composites [J]. Composites Part A: Applied Science and Manufacturing, 2013, 47: 91–101. DOI: 10.1016/j.compositesa.2012.12.003. [24] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Static and high-rate loading of single and multi-bolt carbon–epoxy aircraft fuselage joints [J]. Composites Part A: Applied Science and Manufacturing, 2013, 53: 97–108. DOI: 10.1016/j.compositesa.2013.05.006. [25] THOPPUL S D, FINEGAN J, GIBSON R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures–A review [J]. Composites Science and Technology, 2009, 69(3−4): 301–329. DOI: 10.1016/j.compscitech.2008.09.037. [26] 《中国航空材料手册》编辑委员会. 中国航空材料手册第3卷: 铝合金镁合金[M]. 2版. 北京: 中国标准出版社, 2002: 148−323. [27] 《中国航空材料手册》编辑委员会. 中国航空材料手册第4卷: 钛合金铜合金[M]. 2版. 北京: 中国标准出版社, 2002: 104−132. [28] 白春玉, 刘小川, 周苏枫, 等. 中应变率下材料动态拉伸关键参数测试方法 [J]. 爆炸与冲击, 2015, 35(4): 507–512. DOI: 10.11883/1001-1455(2015)04-0507-06.BAI C Y, LIU X C, ZHOU S F, et al. Material key parameters measurement method in the dynamic tensile testing at intermediate strain rates [J]. Explosion and Shock Waves, 2015, 35(4): 507–512. DOI: 10.11883/1001-1455(2015)04-0507-06. [29] 张正礼. 2024铝合金动态力学本构模型构建 [J]. 沈阳航空航天大学学报, 2014, 31(2): 47–50. DOI: 10.3969/j.issn.2095-1248.2014.02.011.ZHANG Z L. Construction of dynamic mechanical constitutive model of 2024 aluminum [J]. Journal of Shenyang Aerospace University, 2014, 31(2): 47–50. DOI: 10.3969/j.issn.2095-1248.2014.02.011. [30] 张正礼. 几种铝合金材料动态力学性能测试 [J]. 中国民航大学学报, 2014, 32(1): 41–45. DOI: 10.3969/j.issn.1674-5590.2014.01.010.ZHANG Z L. Testing of dynamic mechanical property of several aluminum alloy materials [J]. Journal of Civil Aviation University of China, 2014, 32(1): 41–45. DOI: 10.3969/j.issn.1674-5590.2014.01.010. [31] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024. [32] 罗恒, 王优强, 张平. 7075铝合金超声振动切削残余应力的仿真及实验 [J]. 兵器材料科学与工程, 2019, 42(5): 1–4. DOI: 10.14024/j.cnki.1004-244x.20190606.002.LUO H, WANG Y Q, ZHANG P. Simulation and experiment of residual stress of 7075 aluminum alloy in ultrasonic vibration cutting [J]. Ordnance Material Science and Engineering, 2019, 42(5): 1–4. DOI: 10.14024/j.cnki.1004-244x.20190606.002. [33] 杨强, 惠旭龙, 白春玉, 等. 不同冲击速度下连接结构响应与失效行为分析 [C] // 中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019: 1475−1481.