Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone
-
摘要: 地下岩体工程爆破开挖中,距爆源不同距离处岩体承受的地应力和动载荷大小不同,从动载荷的角度表征岩石动态破坏结果与工程实际更吻合。为研究动载荷和地应力大小对岩体破碎和能量耗散特性的影响,利用动静组合加载试验装置,分别设置7个冲击速度和轴向静应力等级,对红砂岩试件进行冲击试验。根据试件的破碎状况,分析不同静应力工况下冲击速度对岩石破坏模式和机理的影响。计算不同工况下的应力波能量值,研究冲击速度和轴向静应力对岩石能耗特性的影响。对破坏试件进行筛分试验,研究岩石破碎分形维数随冲击速度和轴向静应力的变化关系。结果表明,随着冲击速度的增大,试件的破坏程度逐渐加大。无轴压时岩石试件破坏后整体仍是一个圆柱体,属于张拉破坏;有轴压时岩石试件宏观破坏后呈沙漏状,属于拉剪破坏。岩石耗散能随冲击速度的升高呈二次函数关系递增;轴向静应力越高,递增幅度越小。随着冲击速度的升高,岩石分形维数由零逐渐增加;随着轴向静应力的升高,分形维数由零转为大于零的临界冲击速度先升高后降低。Abstract: Due to the excavation unloading effect and the amplitude attenuation of stress wave, the rock masses locating the different distances away from the blasting source are subjected to different geostress and impact loadings during the blasting excavation of underground rock mass. The construction of relationship between rock dynamic failure properties with impact loadings has more important engineering practical significance compared with representating them with strain rate. In order to investigate the effect of the values of impact loading and the geostress on the characteristics of rock failure and energy dissipation, impact experiments of red sandstone were carried out with a modified split Hopkinson pressure bar testing system, the impact velocities and axial static stresses were set seven levels, respectively. The effects of impact velocity on the failure mode and mechanism of red sandstone under different axial static stresses were researched based on the broken rock specimens. By analyzing the energy values of stress waves under different experimental conditions, the effects of the impact velocity and the axial static stress on energy dissipation of red sandstone were investigated. The fragment fractal dimensions of red sandstone under different impact velocities and axial static stresses were studied based on the sieve test results of the broken specimens. The results show that the increase of impact velocity will aggravate the destroy degree of the red sandstone. The main part after macroscopic failure remains a circular cylinder when a red sandstone specimen is subjected to impact loading and no axial static stress, the failure of the specimen is resulted from its insufficiency of resistance to tensile deformation; but the main part after macroscopic failure represents a hourglass shape when the specimen is under coupled axial static stress and impact loading, the failure mechanism is mixed tension and shear fracture. The dissipation energy of the red sandstone increases in a quadratic function with increasing the impact velocity, the higher the axial static stress, the smaller the increasing amplitude. With the increase of impact velocity, the fractal dimension of the red sandstone increases from zero gradually. For a rock specimen subjected to specific axial static stress, there is a critical impact velocity which signifies that the fractal dimension of the specimen will change from zero to greater than zero, and the critical impact velocity increases first and then decreases with the increase of axial static stress.
-
Key words:
- red sandstone /
- impact velocity /
- failure mode /
- energy dissipation /
- fractal dimension /
- axial static stress
-
表 1 静载荷和冲击速度设置
Table 1. Setting of static load and impact velocity
冲击速度/(m·s−1) 轴向静应力/MPa 冲击动能/J 冲击速度/(m·s−1) 轴向静应力/MPa 冲击动能/J 4.0 0 15.76 12.0 36 141.87 6.0 9 35.47 13.5 45 179.55 8.0 18 63.05 15.0 54 221.67 10.0 27 98.52 表 2 冲击试验工况及试验结果
Table 2. Conditions and results of impact experiments
σs/MPa v/(m·s−1) Wi/J Wr/J Wt/J 粒径分布/g D <50 mm <40 mm <20 mm <10 mm <5 mm <2 mm <1 mm 3.95 7.69 1.61 3.96 231.86 0 0 0 0 0 0 0 5.86 27.07 7.59 13.14 235.45 0 0 0 0 0 0 0 7.99 52.65 16.97 24.30 235.04 0 0 0 0 0 0 0 0 10.01 83.77 25.11 34.52 234.87 0 0 0 0 0 0 0 11.45 111.38 33.50 43.93 230.36 0.32 0.32 0.32 0.14 0 0 0.903 12.29 129.19 39.31 48.77 233.25 9.15 9.15 6.60 1.13 0.21 0.11 1.343 14.87 188.97 63.19 50.30 231.03 231.03 190.46 59.75 39.03 26.60 22.86 2.319 4.16 9.93 3.57 5.81 232.89 0 0 0 0 0 0 0 6.08 22.69 8.13 10.16 232.36 0 0 0 0 0 0 0 7.91 48.12 15.82 21.95 235.01 0 0 0 0 0 0 0 9 10.10 77.36 25.57 29.42 236.44 0 0 0 0 0 0 0 12.05 121.75 38.53 41.25 234.56 0 0 0 0 0 0 0 13.43 144.85 48.54 47.09 233.14 6.28 6.28 4.04 0.73 0.27 0.24 1.552 14.82 176.01 60.66 47.65 231.40 231.40 195.89 67.04 43.17 27.54 24.35 2.329 3.95 6.28 2.01 2.57 234.69 0 0 0 0 0 0 0 6.14 21.71 7.13 9.70 233.61 0 0 0 0 0 0 0 8.03 43.06 14.58 18.58 234.17 0 0 0 0 0 0 0 18 9.82 64.17 27.65 24.70 231.05 0 0 0 0 0 0 0 12.05 113.74 42.94 39.76 233.49 0 0 0 0 0 0 0 13.78 142.30 58.13 38.49 232.17 67.92 31.25 8.05 3.47 2.57 2.20 1.854 15.40 177.67 72.68 41.14 229.66 229.66 204.22 75.99 42.78 27.78 24.49 2.323 4.22 5.39 2.01 2.37 236.18 0 0 0 0 0 0 0 6.05 17.93 6.64 7.07 233.49 0 0 0 0 0 0 0 8.05 39.10 13.99 16.16 233.28 0 0 0 0 0 0 0 27 10.08 59.33 22.71 21.01 233.62 0 0 0 0 0 0 0 12.15 101.63 40.06 33.76 0 0 0 0 0 0 0 0 13.55 130.97 60.55 38.87 236.20 0 0 0 0 0 0 1.850 15.21 165.58 81.27 37.19 234.39 60.63 33.61 10.51 3.79 2.43 2.12 2.273 4.24 4.03 1.51 2.47 231.22 231.22 164.82 60.55 34.21 21.95 19.16 0 5.94 12.95 4.48 4.99 233.41 0 0 0 0 0 0 0 8.24 35.43 13.31 14.17 232.88 0 0 0 0 0 0 0 36 10.13 53.52 20.97 19.34 234.15 0 0 0 0 0 0 0 12.19 90.89 35.25 29.85 232.27 0 0 0 0 0 0 0.729 13.70 119.48 46.41 31.78 231.64 3.01 3.01 0.86 0.11 0.01 0.01 1.908 15.42 156.97 62.39 33.33 230.58 68.71 38.76 6.74 4.51 2.88 2.84 2.260 4.06 5.94 1.74 3.09 233.53 233.53 184.23 66.12 34.48 22.42 19.40 0 6.10 11.75 4.30 4.66 233.49 0 0 0 0 0 0 0 7.91 25.71 9.40 9.90 231.48 0 0 0 0 0 0 0 45 10.32 50.09 20.10 16.59 234.76 0 0 0 0 0 0 0 12.04 81.40 35.73 22.96 234.89 0 0 0 0 0 0 0.725 13.39 104.49 45.54 29.43 233.60 5.33 5.33 1.61 0.18 0.04 0 1.886 14.97 136.00 59.14 28.06 232.46 69.65 33.64 11.57 5.29 2.76 2.44 2.285 续表 2 σs/MPa v/(m·s−1) Wi/J Wr/J Wt/J 粒径分布/g D <50 mm <40 mm <20 mm <10 mm <5 mm <2 mm <1 mm 4.08 3.50 1.12 1.45 229.52 229.52 194.74 72.69 36.93 24.19 21.67 0 6.13 10.38 3.86 3.88 234.17 0 0 0 0 0 0 0 8.27 29.15 11.48 9.56 229.48 0 0 0 0 0 0 0 54 10.27 41.95 16.66 13.09 234.37 0 0 0 0 0 0 0 12.06 78.03 38.88 18.54 232.12 0 0 0 0 0 0 2.043 13.82 108.35 57.96 21.99 234.76 163.66 79.15 43.23 24.67 15.65 13.40 2.290 15.23 127.38 73.68 22.73 230.14 230.14 198.28 64.51 38.67 24.75 21.46 2.341 表 3 冲击速度约为13.5 m/s时试件破坏的si和ddam值
Table 3. Values of si and ddam in main part of destroyed specimens at the impact velocity of around 13.5 m/s
σs/MPa si/mm ddam/mm σs/MPa si/mm ddam/mm 9 6.88 44.40 36 23.08 36.26 18 25.10 36.38 45 22.56 36.10 27 23.54 36.88 54 17.14 0 -
[1] 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究 [J]. 岩石力学与工程学报, 2008, 27(7): 1387–1395. DOI: 10.3321/j.issn:1000-6915.2008.07.011.LI X B, ZHOU Z L, YE Z Y, et al. Study of rock mechanical characteristics under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387–1395. DOI: 10.3321/j.issn:1000-6915.2008.07.011. [2] 严鹏, 卢文波, 李洪涛, 等. 地应力对爆破过程中围岩振动能量分布的影响 [J]. 爆炸与冲击, 2009, 29(2): 182–188. DOI: 10.11883/1001-1455(2009)02-0182-07.YAN P, LU W B, LI H T, et al. Influences of geo-stress on energy distribution of vibration induced by blasting excavation [J]. Explosion and Shock Waves, 2009, 29(2): 182–188. DOI: 10.11883/1001-1455(2009)02-0182-07. [3] 黄达, 谭清, 黄润秋. 高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究 [J]. 岩石力学与工程学报, 2012, 31(7): 1379–1389. DOI: 10.3969/j.issn.1000-6915.2012.07.010.HUANG D, TAN Q, HUANG R Q. Fractal characteristics of fragmentation and correlation with energy of marble under unloading with high confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1379–1389. DOI: 10.3969/j.issn.1000-6915.2012.07.010. [4] 张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究 [J]. 采矿与安全工程学报, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.ZHANG W Q, SHI B M, MU C M. Experimental research on failure and energy dissipation law of coal under impact load [J]. Journal of Mining and Safety Engineering, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029. [5] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461. [6] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7. [7] 赵光明, 马文伟, 孟祥瑞. 动载作用下岩石类材料破坏模式及能量特性 [J]. 岩土力学, 2015, 36(12): 3598–3605; 3624. DOI: 10.16285/j.rsm.2015.12.033.ZHAO G M, MA W W, MENG X R. Damage modes and energy characteristics of rock-like materials under dynamic load [J]. Rock and Soil Mechanics, 2015, 36(12): 3598–3605; 3624. DOI: 10.16285/j.rsm.2015.12.033. [8] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011.LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. [9] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005. [10] 江红祥, 杜长龙, 刘送永. 冲击速度对煤岩破碎能量和粒度分布的影响 [J]. 煤炭学报, 2013, 38(4): 604–609.JIANG H X, DU C L, LIU S Y. The effects of impact velocity on energy and size distribution of rock crushing [J]. Journal of China Coal Society, 2013, 38(4): 604–609. [11] YIN Z Q, CHEN W S, HAO H, et al. Dynamic compressive test of gas-containing coal using a modified split Hopkinson pressure bar system [J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 815–829. DOI: 10.1007/s00603-019-01955-w. [12] LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024. [13] DUAN B F, XIA H L, YANG X X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways [J]. Tunnelling and Underground Space Technology, 2018, 71: 605–622. DOI: 10.1016/j.tust.2017.10.012. [14] 雷文杰, 李金雨, 云美厚. 采动微地震波传播与衰减特性研究 [J]. 岩土力学, 2019, 40(4): 1491–1497. DOI: 10.16285/j.rsm.2017.2424.LEI W J, LI J Y, YUN M H. Research on propagation and attenuation characteristics of mining micro-seismic wave [J]. Rock and Soil Mechanics, 2019, 40(4): 1491–1497. DOI: 10.16285/j.rsm.2017.2424. [15] SU G S, ZHAI S B, JIANG J Q, et al. Influence of radial stress gradient on Strainbursts: an experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2659–2676. DOI: 10.1007/s00603-017-1266-3. [16] ZHU J B, LIAO Z Y, TANG C A. Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses [J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3935–3946. DOI: 10.1007/s00603-016-0993-1. [17] DU K, TAO M, LI X B, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453. DOI: 10.1007/s00603-016-0990-4. [18] MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8. [19] RAFIEI RENANI H, MARTIN C D. Modeling the progressive failure of hard rock pillars [J]. Tunnelling and Underground Space Technology, 2018, 74: 71–81. DOI: 10.1016/j.tust.2018.01.006. [20] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005. [21] ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. DOI: 10.1016/S1003-6326(17)60021-9. [22] 金解放, 李夕兵, 尹土兵, 等. 轴向冲击下弹性杆中轴向静载对入射波的影响 [J]. 工程力学, 2013, 30(11): 21–27.JIN J F, LI X B, YIN T B, et al. Effect of axial static stress of elastic bar on incident stress wave under axial impact loading [J]. Engineering Mechanics, 2013, 30(11): 21–27. [23] 高峰, 谢和平, 巫静波. 岩石损伤和破碎相关性的分形分析 [J]. 岩石力学与工程学报, 1999, 18(5): 503–506. DOI: 10.3321/j.issn:1000-6915.1999.05.002.GAO F, XIE H P, WU J B. Fractal analysis of the relation between rock damage and rock fragmentation [J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 503–506. DOI: 10.3321/j.issn:1000-6915.1999.05.002. [24] LI Y R, HUANG R Q. Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 15–22. DOI: 10.1016/j.ijrmms.2015.01.007. [25] SUN H, LIU X L, ZHU J B. Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 1–10. DOI: 10.1016/j.ijrmms.2019.03.002. [26] YIN Z Q, LI X B, JIN J F, et al. Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 175–184. DOI: 10.1016/S1003-6326(11)61158-8. [27] 单晓云, 李占金. 分形理论和岩石破碎的分形研究 [J]. 河北理工学院学报, 2003, 25(2): 11–17;30. DOI: 10.3969/j.issn.1674-0262.2003.02.003.SHAN X Y, LI Z J. Fractal theory and fractal study of rock fragmentation [J]. Journal of Hebei Institute of Technology, 2003, 25(2): 11–17;30. DOI: 10.3969/j.issn.1674-0262.2003.02.003.