冲击速度和轴向静载对红砂岩破碎及能耗的影响

金解放 吴越 张睿 王熙博 余雄 钟依禄

金解放, 吴越, 张睿, 王熙博, 余雄, 钟依禄. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479
引用本文: 金解放, 吴越, 张睿, 王熙博, 余雄, 钟依禄. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479
JIN Jiefang, WU Yue, ZHANG Rui, WANG Xibo, YU Xiong, ZHONG Yilu. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion And Shock Waves, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479
Citation: JIN Jiefang, WU Yue, ZHANG Rui, WANG Xibo, YU Xiong, ZHONG Yilu. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion And Shock Waves, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479

冲击速度和轴向静载对红砂岩破碎及能耗的影响

doi: 10.11883/bzycj-2019-0479
基金项目: 国家自然科学基金(51664017,51964015);江西省研究生创新专项资金项目(YC2018-S304);江西理工大学清江青年英才支持计划(JXUSTQJBJ2017007)
详细信息
    作者简介:

    金解放(1977- ),男,博士,教授,博士生导师,jjf_chang@126.com

  • 中图分类号: O347

Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone

  • 摘要: 地下岩体工程爆破开挖中,距爆源不同距离处岩体承受的地应力和动载荷大小不同,从动载荷的角度表征岩石动态破坏结果与工程实际更吻合。为研究动载荷和地应力大小对岩体破碎和能量耗散特性的影响,利用动静组合加载试验装置,分别设置7个冲击速度和轴向静应力等级,对红砂岩试件进行冲击试验。根据试件的破碎状况,分析不同静应力工况下冲击速度对岩石破坏模式和机理的影响。计算不同工况下的应力波能量值,研究冲击速度和轴向静应力对岩石能耗特性的影响。对破坏试件进行筛分试验,研究岩石破碎分形维数随冲击速度和轴向静应力的变化关系。结果表明,随着冲击速度的增大,试件的破坏程度逐渐加大。无轴压时岩石试件破坏后整体仍是一个圆柱体,属于张拉破坏;有轴压时岩石试件宏观破坏后呈沙漏状,属于拉剪破坏。岩石耗散能随冲击速度的升高呈二次函数关系递增;轴向静应力越高,递增幅度越小。随着冲击速度的升高,岩石分形维数由零逐渐增加;随着轴向静应力的升高,分形维数由零转为大于零的临界冲击速度先升高后降低。
  • 图  1  动静组合加载试验装置

    Figure  1.  Experimental setup with static-dynamic coupling loading

    图  2  异形冲头尺寸及入射波波形

    Figure  2.  Cone-shaped striker dimensions and incident wave

    图  3  单轴压缩应力-应变曲线

    Figure  3.  Stress-strain curve of red sandstone under uniaxial compression

    图  4  不同冲击速度作用后的岩石试件

    Figure  4.  Rock specimens subjected to under different impact velocities

    图  5  不同冲击速度作用下红砂岩破坏模式

    Figure  5.  Failure modes of red sandstone under different impact velocities

    图  6  轴向静压为27 MPa时不同冲击速度动载荷作用后的岩石试件

    Figure  6.  Rock specimens subjected to axial static stress of 27 MPa and dynamic loading of different impact velocities

    图  7  冲击速度约为13.5 m/s、不同轴压下岩石的破坏模式

    Figure  7.  Failure modes of rock under impact velocities of about 13.5 m/s and different axial static stresses

    图  8  艾略特湖矿破碎矿柱[19]

    Figure  8.  A crushed mine pillar at the Elliot Lake mine[19]

    图  9  试件破坏的siddam值与轴压的关系(v≈13.5 m/s)

    Figure  9.  Changes of si and ddam with axial static stress for a broken specimen when the impact velocity equals to 13.5 m/s approximately

    图  10  冲击载荷作用下具有轴压试件的受力示意图

    Figure  10.  Free-body diagram of a specimen under coupled axial static stress and impact loading

    图  11  不同轴压下能量随冲击速度的变化

    Figure  11.  Energy varied with impact velocity under different axial static loads

    图  12  轴压为45和54 MPa时破碎试件的ln(M(x)/Mtot)-ln(x/xm)关系

    Figure  12.  ln(M(x)/Mtot)-ln(x/xm) relations for broken specimens with the axial static stresses of 45 and 54 MPa, respectively

    图  13  冲击速度与分形维数的关系

    Figure  13.  Fractal dimension varied with impact velocity

    图  14  岩石临界冲击速度与轴向静应力的关系

    Figure  14.  Critical impact velocity of rock varied with axial static stress

    表  1  静载荷和冲击速度设置

    Table  1.   Setting of static load and impact velocity

    冲击速度/(m·s−1)轴向静应力/MPa冲击动能/J冲击速度/(m·s−1)轴向静应力/MPa冲击动能/J
    4.0 015.7612.036141.87
    6.0 935.4713.545179.55
    8.01863.0515.054221.67
    10.02798.52
    下载: 导出CSV

    表  2  冲击试验工况及试验结果

    Table  2.   Conditions and results of impact experiments

    σs/MPav/(m·s−1)Wi/JWr/JWt/J粒径分布/gD
    <50 mm<40 mm<20 mm<10 mm<5 mm<2 mm<1 mm
    3.957.691.613.96231.860000000
    5.8627.077.5913.14235.450000000
    7.9952.6516.9724.30235.040000000
    010.0183.7725.1134.52234.870000000
    11.45111.3833.5043.93230.360.320.320.320.14000.903
    12.29129.1939.3148.77233.259.159.156.601.130.210.111.343
    14.87188.9763.1950.30231.03231.03190.4659.7539.0326.6022.862.319
    4.169.933.575.81232.890000000
    6.0822.698.1310.16232.360000000
    7.9148.1215.8221.95235.010000000
    910.1077.3625.5729.42236.440000000
    12.05121.7538.5341.25234.560000000
    13.43144.8548.5447.09233.146.286.284.040.730.270.241.552
    14.82176.0160.6647.65231.40231.40195.8967.0443.1727.5424.352.329
    3.956.282.012.57234.690000000
    6.1421.717.139.70233.610000000
    8.0343.0614.5818.58234.170000000
    189.8264.1727.6524.70231.050000000
    12.05113.7442.9439.76233.490000000
    13.78142.3058.1338.49232.1767.9231.258.053.472.572.201.854
    15.40177.6772.6841.14229.66229.66204.2275.9942.7827.7824.492.323
    4.225.392.012.37236.180000000
    6.0517.936.647.07233.490000000
    8.0539.1013.9916.16233.280000000
    2710.0859.3322.7121.01233.620000000
    12.15101.6340.0633.7600000000
    13.55130.9760.5538.87236.200000001.850
    15.21165.5881.2737.19234.3960.6333.6110.513.792.432.122.273
    4.244.031.512.47231.22231.22164.8260.5534.2121.9519.160
    5.9412.954.484.99233.410000000
    8.2435.4313.3114.17232.880000000
    3610.1353.5220.9719.34234.150000000
    12.1990.8935.2529.85232.270000000.729
    13.70119.4846.4131.78231.643.013.010.860.110.010.011.908
    15.42156.9762.3933.33230.5868.7138.766.744.512.882.842.260
    4.065.941.743.09233.53233.53184.2366.1234.4822.4219.400
    6.1011.754.304.66233.490000000
    7.9125.719.409.90231.480000000
    4510.3250.0920.1016.59234.760000000
    12.0481.4035.7322.96234.890000000.725
    13.39104.4945.5429.43233.605.335.331.610.180.0401.886
    14.97136.0059.1428.06232.4669.6533.6411.575.292.762.442.285
    下载: 导出CSV
    续表 2
    σs/MPav/(m·s−1)Wi/JWr/JWt/J粒径分布/gD
    <50 mm<40 mm<20 mm<10 mm<5 mm<2 mm<1 mm
    4.083.501.121.45229.52229.52194.7472.6936.9324.1921.670
    6.1310.383.863.88234.170000000
    8.2729.1511.489.56229.480000000
    5410.2741.9516.6613.09234.370000000
    12.0678.0338.8818.54232.120000002.043
    13.82108.3557.9621.99234.76163.6679.1543.2324.6715.6513.402.290
    15.23127.3873.6822.73230.14230.14198.2864.5138.6724.7521.462.341
    下载: 导出CSV

    表  3  冲击速度约为13.5 m/s时试件破坏的si和ddam

    Table  3.   Values of si and ddam in main part of destroyed specimens at the impact velocity of around 13.5 m/s

    σs/MPasi/mmddam/mmσs/MPasi/mmddam/mm
    9 6.8844.403623.0836.26
    1825.1036.384522.5636.10
    2723.5436.885417.14 0
    下载: 导出CSV
  • [1] 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究 [J]. 岩石力学与工程学报, 2008, 27(7): 1387–1395. DOI: 10.3321/j.issn:1000-6915.2008.07.011.

    LI X B, ZHOU Z L, YE Z Y, et al. Study of rock mechanical characteristics under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387–1395. DOI: 10.3321/j.issn:1000-6915.2008.07.011.
    [2] 严鹏, 卢文波, 李洪涛, 等. 地应力对爆破过程中围岩振动能量分布的影响 [J]. 爆炸与冲击, 2009, 29(2): 182–188. DOI: 10.11883/1001-1455(2009)02-0182-07.

    YAN P, LU W B, LI H T, et al. Influences of geo-stress on energy distribution of vibration induced by blasting excavation [J]. Explosion and Shock Waves, 2009, 29(2): 182–188. DOI: 10.11883/1001-1455(2009)02-0182-07.
    [3] 黄达, 谭清, 黄润秋. 高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究 [J]. 岩石力学与工程学报, 2012, 31(7): 1379–1389. DOI: 10.3969/j.issn.1000-6915.2012.07.010.

    HUANG D, TAN Q, HUANG R Q. Fractal characteristics of fragmentation and correlation with energy of marble under unloading with high confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1379–1389. DOI: 10.3969/j.issn.1000-6915.2012.07.010.
    [4] 张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究 [J]. 采矿与安全工程学报, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.

    ZHANG W Q, SHI B M, MU C M. Experimental research on failure and energy dissipation law of coal under impact load [J]. Journal of Mining and Safety Engineering, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.
    [5] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [6] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [7] 赵光明, 马文伟, 孟祥瑞. 动载作用下岩石类材料破坏模式及能量特性 [J]. 岩土力学, 2015, 36(12): 3598–3605; 3624. DOI: 10.16285/j.rsm.2015.12.033.

    ZHAO G M, MA W W, MENG X R. Damage modes and energy characteristics of rock-like materials under dynamic load [J]. Rock and Soil Mechanics, 2015, 36(12): 3598–3605; 3624. DOI: 10.16285/j.rsm.2015.12.033.
    [8] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011.

    LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011.
    [9] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.

    XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.
    [10] 江红祥, 杜长龙, 刘送永. 冲击速度对煤岩破碎能量和粒度分布的影响 [J]. 煤炭学报, 2013, 38(4): 604–609.

    JIANG H X, DU C L, LIU S Y. The effects of impact velocity on energy and size distribution of rock crushing [J]. Journal of China Coal Society, 2013, 38(4): 604–609.
    [11] YIN Z Q, CHEN W S, HAO H, et al. Dynamic compressive test of gas-containing coal using a modified split Hopkinson pressure bar system [J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 815–829. DOI: 10.1007/s00603-019-01955-w.
    [12] LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024.
    [13] DUAN B F, XIA H L, YANG X X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways [J]. Tunnelling and Underground Space Technology, 2018, 71: 605–622. DOI: 10.1016/j.tust.2017.10.012.
    [14] 雷文杰, 李金雨, 云美厚. 采动微地震波传播与衰减特性研究 [J]. 岩土力学, 2019, 40(4): 1491–1497. DOI: 10.16285/j.rsm.2017.2424.

    LEI W J, LI J Y, YUN M H. Research on propagation and attenuation characteristics of mining micro-seismic wave [J]. Rock and Soil Mechanics, 2019, 40(4): 1491–1497. DOI: 10.16285/j.rsm.2017.2424.
    [15] SU G S, ZHAI S B, JIANG J Q, et al. Influence of radial stress gradient on Strainbursts: an experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2659–2676. DOI: 10.1007/s00603-017-1266-3.
    [16] ZHU J B, LIAO Z Y, TANG C A. Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses [J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3935–3946. DOI: 10.1007/s00603-016-0993-1.
    [17] DU K, TAO M, LI X B, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453. DOI: 10.1007/s00603-016-0990-4.
    [18] MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8.
    [19] RAFIEI RENANI H, MARTIN C D. Modeling the progressive failure of hard rock pillars [J]. Tunnelling and Underground Space Technology, 2018, 74: 71–81. DOI: 10.1016/j.tust.2018.01.006.
    [20] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [21] ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. DOI: 10.1016/S1003-6326(17)60021-9.
    [22] 金解放, 李夕兵, 尹土兵, 等. 轴向冲击下弹性杆中轴向静载对入射波的影响 [J]. 工程力学, 2013, 30(11): 21–27.

    JIN J F, LI X B, YIN T B, et al. Effect of axial static stress of elastic bar on incident stress wave under axial impact loading [J]. Engineering Mechanics, 2013, 30(11): 21–27.
    [23] 高峰, 谢和平, 巫静波. 岩石损伤和破碎相关性的分形分析 [J]. 岩石力学与工程学报, 1999, 18(5): 503–506. DOI: 10.3321/j.issn:1000-6915.1999.05.002.

    GAO F, XIE H P, WU J B. Fractal analysis of the relation between rock damage and rock fragmentation [J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 503–506. DOI: 10.3321/j.issn:1000-6915.1999.05.002.
    [24] LI Y R, HUANG R Q. Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 15–22. DOI: 10.1016/j.ijrmms.2015.01.007.
    [25] SUN H, LIU X L, ZHU J B. Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 1–10. DOI: 10.1016/j.ijrmms.2019.03.002.
    [26] YIN Z Q, LI X B, JIN J F, et al. Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 175–184. DOI: 10.1016/S1003-6326(11)61158-8.
    [27] 单晓云, 李占金. 分形理论和岩石破碎的分形研究 [J]. 河北理工学院学报, 2003, 25(2): 11–17;30. DOI: 10.3969/j.issn.1674-0262.2003.02.003.

    SHAN X Y, LI Z J. Fractal theory and fractal study of rock fragmentation [J]. Journal of Hebei Institute of Technology, 2003, 25(2): 11–17;30. DOI: 10.3969/j.issn.1674-0262.2003.02.003.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  3823
  • HTML全文浏览量:  1311
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-25
  • 修回日期:  2020-02-19
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回