不同当量比下喷管对旋转爆震特性的影响研究

王顺利 吴云 金迪 郭善广 钟也磐 杨兴魁

王顺利, 吴云, 金迪, 郭善广, 钟也磐, 杨兴魁. 不同当量比下喷管对旋转爆震特性的影响研究[J]. 爆炸与冲击, 2020, 40(10): 102102. doi: 10.11883/bzycj-2019-0481
引用本文: 王顺利, 吴云, 金迪, 郭善广, 钟也磐, 杨兴魁. 不同当量比下喷管对旋转爆震特性的影响研究[J]. 爆炸与冲击, 2020, 40(10): 102102. doi: 10.11883/bzycj-2019-0481
WANG Shunli, WU Yun, JIN Di, GUO Shanguang, ZHONG Yepan, YANG Xingkui. Effects of nozzles on performance of rotating detonation at different equivalence ratios[J]. Explosion And Shock Waves, 2020, 40(10): 102102. doi: 10.11883/bzycj-2019-0481
Citation: WANG Shunli, WU Yun, JIN Di, GUO Shanguang, ZHONG Yepan, YANG Xingkui. Effects of nozzles on performance of rotating detonation at different equivalence ratios[J]. Explosion And Shock Waves, 2020, 40(10): 102102. doi: 10.11883/bzycj-2019-0481

不同当量比下喷管对旋转爆震特性的影响研究

doi: 10.11883/bzycj-2019-0481
基金项目: 国家自然科学基金(91641204,51907205,51790511);陕西省自然科学基础研究计划(2018JQ1011)
详细信息
    作者简介:

    王顺利(1993- ),男,硕士研究生,874370792@qq.com

    通讯作者:

    吴 云(1983- ),男,博士,教授,wuyun1223@126.com

  • 中图分类号: O381;V231.22

Effects of nozzles on performance of rotating detonation at different equivalence ratios

  • 摘要: 为研究不同当量比下喷管构型对旋转爆震特性的影响,以煤油预燃裂解气为燃料,氧气体积分数为30%的富氧空气为氧化剂,开展了无喷管、收敛喷管、扩张喷管和收敛扩张喷管等工况下旋转爆震特性实验研究。实验发现,当量比为0.73~1.30时旋转爆震可稳定工作。随着当量比和喷管构型的变化,爆震波出现了单波、不稳定的对撞双波和稳定的对撞双波等3种传播模态。喷管构型对模态转换和旋转爆震波速有重要影响,收敛和收敛扩张喷管会促使新波头的产生,导致爆震波主要以双波对撞模态传播;而扩张喷管工况下,爆震波主要以单波模态传播。收敛喷管和收敛扩张喷管会使得波速最大值偏离化学恰当比,收敛扩张喷管可以提升爆震波速。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  供油平台

    Figure  2.  Fuel supply system

    图  3  供气平台

    Figure  3.  Gas supply system

    图  4  实验时序

    Figure  4.  Time sequence of the experiments

    图  5  旋转爆震发动机简图

    Figure  5.  Schematic diagram of the RDE

    图  6  集气腔剖面图

    Figure  6.  The profile of the plenum chamber

    图  7  喷管侧剖面图

    Figure  7.  Side profiles of the nozzles

    图  8  燃烧室

    Figure  8.  The detonation combustion chamber

    图  9  PCB1快速傅里叶变换结果及压力信号放大图(当量比为0.85)

    Figure  9.  FFT results of PCB1 pressure signals and close-ups of PCB1 distribution at the equivalence ratio of 0.85

    图  10  压力信号时域(当量比为0.73,收敛喷管)

    Figure  10.  Overview of the PCB distribution (equivalence ratio 0.73, convergent nozzle)

    图  11  PCB1时域信号放大图(当量比为0.73,收敛喷管)

    Figure  11.  Close-up of PCB1 distribution (equivalence ratio 0.73, convergent nozzle)

    图  12  PCB1压力信号傅里叶变换结果(当量比为0.73,收敛喷管)

    Figure  12.  FFT results of PCB1 (equivalence ratio 0.73, convergent nozzle)

    图  13  PCB1压力信号的短时傅里叶变换结果(当量比为0.73,收敛喷管)

    Figure  13.  STFT results of PCB1 (equivalence ratio 0.73, convergent nozzle)

    图  14  PCB1压力信号的短时傅里叶变换结果(当量比为0.73)

    Figure  14.  The STFT results of PCB1 (equivalence ratio 0.73)

    图  15  PCB1压力信号的傅里叶变换结果(当量比为1.02)

    Figure  15.  FFT results of PCB1 (equivalence ratio 1.02)

    图  16  PCB2信号的短时傅里叶变换结果(当量比为1.02,收敛扩张喷管)

    Figure  16.  STFT results of PCB2 (equivalence ratio 1.02, convergent-divergent nozzle)

    图  17  PCB1压力信号放大图(当量比为1.02,收敛扩张喷管)

    Figure  17.  Close-up of PCB distribution (equivalence ratio 1.02, convergent-divergent nozzle)

    图  18  PCB1压力信号放大图(当量比为0.85,无喷管)

    Figure  18.  Close-up of PCB distribution (equivalence ratio 0.85, no nozzle installed)

    图  19  爆震波波速随当量比的变化

    Figure  19.  Detonation wave velocity varied with equivalence ratio

    表  1  实验工况

    Table  1.   Experimental conditions

    F1/(g·s−1)F2/(g·s−1)F3/(g·s−1)F4/(g·s−1)γ
    40.03.5 7.695.00.73
    40.03.5 8.895.00.85
    40.03.510.595.01.02
    40.03.513.595.01.30
    下载: 导出CSV
  • [1] VOITSEKHOVSKⅡ B V. Maintained detonations [J]. Soviet Physics Doklady, 1960, 4(6): 1207–1209.
    [2] BYKOVSKⅡ F A, MITROFANOV V V. Detonation combustion of a gas mixture in a cylindrical chamber [J]. Combustion, Explosion and Shock Waves, 1980, 16(5): 570–578. DOI: 10.1007/BF00794937.
    [3] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Spin detonation of fuel-air mixtures in a cylindrical combustor [J]. Doklady Physics, 2005, 50(1): 56–58. DOI: 10.1134/1.1862376.
    [4] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations [J]. Journal of Propulsion and Power, 2006, 22(6): 1204–1216. DOI: 10.2514/1.17656.
    [5] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of hydrogen-oxygen mixtures: 1: annular cylindrical combustors [J]. Combustion, Explosion, and Shock Waves, 2008, 44(2): 150–162. DOI: 10.1007/s10573-008-0021-1.
    [6] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of hydrogen-oxygen mixtures: 2: combustor with an expanding annular channel [J]. Combustion, Explosion, and Shock Waves, 2008, 44(3): 330–342. DOI: 10.1007/s10573-008-0041-x.
    [7] LU F K, BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts [J]. Journal of Propulsion and Power, 2014, 30(5): 1125–1142. DOI: 10.2514/1.B34802.
    [8] WOLAŃSKI P. Detonative propulsion [J]. Proceedings of the Combustion Institute, 2013, 34(1): 125–158. DOI: 10.1016/j.proci.2012.10.005.
    [9] SHAO Y T, LIU M, WANG J P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance [J]. Chinese Journal of Aeronautics, 2010, 23(6): 647–652. DOI: 10.1016/s1000-9361(09)60266-1.
    [10] YI T H, LOU J, TURANGAN C, et al. Effect of nozzle shapes on the performance of continuously-rotating detonation engine [C] // Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010. DOI: 10.2514/6.2010-152.
    [11] JOURDAINE N, TSUBOI N, OZAWA K, et al. Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3443–3451. DOI: 10.1016/j.proci.2018.09.024.
    [12] KATO Y, ISHIHARA K, MATSUOKA K, et al. Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle [C] // Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego: AIAA, 2016. DOI: 10.2514/6.2016-1406.
    [13] 高剑, 马虎, 裴晨曦, 等. 喷管对旋转爆震发动机性能影响的实验 [J]. 航空动力学报, 2016, 31(10): 2443–2453. DOI: 10.13224/j.cnki.jasp.2016.10.018.

    GAO J, MA H, PEI C X, et al. Experiment of effect of nozzle shapes on the performance of rotating detonation engine [J]. Journal of Aerospace Power, 2016, 31(10): 2443–2453. DOI: 10.13224/j.cnki.jasp.2016.10.018.
    [14] FOTIA M, KAEMMING T A, CODONI J R, et al. Experimental thrust sensitivity of a rotating detonation engine to various aerospike plug-nozzle configurations [C] // Proceedings of AIAA Scitech 2019 Forum. San Diego: AIAA, 2019. DOI: 10.2514/6.2019-1743.
    [15] RANKIN B A, HOKE J, SCHAUER F. Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine [C] // Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor: AIAA, 2014. DOI: 10.2514/6.2014-1015.
    [16] SONG F L, WU Y, XU S D, et al. Pre-combustion cracking characteristics of kerosene [J]. Chemical Physics Letters, 2019, 737: 136812. DOI: 10.1016/j.cplett.2019.136812.
    [17] SONG F L, WU Y, XU S D, et al. Effects of refueling position and residence time on pre-combustion cracking characteristic of aviation kerosene RP-3 [J]. Fuel, 2020, 270: 117548. DOI: 10.1016/j.fuel.2020.117548.
    [18] BLUEMNER R, BOHON M, PASCHEREIT C O, et al. Dynamics of counter-rotating wave modes in an RDC [C] // Proceedings of 2018 Joint Propulsion Conference. Cincinnati: AIAA, 2018. DOI: 10.2514/6.2018-4572.
    [19] 刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究:Ⅱ: 双波对撞传播模式 [J]. 推进技术, 2014, 35(2): 269–275. DOI: 10.13675/j.cnki.tjjs.2014.02.031.

    LIU S J, LIN Z Y, LIU W D, et al. Research on continuous rotating detonation wave propagation process: Ⅱ: two-wave collision propagation mode [J]. Journal of Propulsion Technology, 2014, 35(2): 269–275. DOI: 10.13675/j.cnki.tjjs.2014.02.031.
    [20] DENG L, MA H, XU C, et al. The feasibility of mode control in rotating detonation engine [J]. Applied Thermal Engineering, 2018, 129: 1538–1550. DOI: 10.1016/j.applthermaleng.2017.10.146.
    [21] ZHONG Y P, WU Y, JIN D, et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene [J]. Aerospace Science and Technology, 2019, 95: 105480. DOI: 10.1016/j.ast.2019.105480.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  3426
  • HTML全文浏览量:  1505
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-06-11
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回