• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

不耦合装药爆破孔壁压力峰值的实验研究

叶志伟 陈明 魏东 卢文波 刘涛 吴亮

熊俊, 周海兵, 刘文韬, 张树道, 孙锦山. 滑移爆轰驱动钢管的层裂[J]. 爆炸与冲击, 2008, 28(2): 105-109. doi: 10.11883/1001-1455(2008)02-0105-05
引用本文: 叶志伟, 陈明, 魏东, 卢文波, 刘涛, 吴亮. 不耦合装药爆破孔壁压力峰值的实验研究[J]. 爆炸与冲击, 2021, 41(5): 055201. doi: 10.11883/bzycj-2020-0004
XIONG Jun, ZHOU Hai-bing, LIU Wen-tao, ZHANG Shu-dao, SUN Jin-shan. Spallation of steel tube driven by sliding detonation[J]. Explosion And Shock Waves, 2008, 28(2): 105-109. doi: 10.11883/1001-1455(2008)02-0105-05
Citation: YE Zhiwei, CHEN Ming, WEI Dong, LU Wenbo, LIU Tao, WU Liang. Experimental study on the peak pressure of borehole wall in decoupling charge blasting[J]. Explosion And Shock Waves, 2021, 41(5): 055201. doi: 10.11883/bzycj-2020-0004

不耦合装药爆破孔壁压力峰值的实验研究

doi: 10.11883/bzycj-2020-0004
基金项目: 国家自然科学基金(51779193,51479147);湖北省技术创新专项重大项目(2017ACA102)
详细信息
    作者简介:

    叶志伟(1994- ),男,博士研究生,whuyzw@whu.edu.cn

    通讯作者:

    陈 明(1977- ),男,博士,教授,博士生导师,whuchm@whu.edu.cn

  • 中图分类号: O383

Experimental study on the peak pressure of borehole wall in decoupling charge blasting

  • 摘要: 不耦合装药爆破孔壁压力峰值是控制岩体轮廓成形质量及进行非流固耦合爆破振动响应数值模拟分析的重要参数,本文采用实验方法研究了不耦合装药爆破的孔壁压力峰值:利用材质为20钢的无缝薄壁钢管模拟不耦合装药爆破炮孔,以高灵敏度、高精度的应变片为传感器,选用超动态应变仪采集钢管内置柱状炸药卷爆炸过程中钢管外壁产生的环向应变,应用动荷载作用下薄壁圆筒的动力响应计算方法,反演分析采集的钢管外壁环向应变数据,得到了爆破过程中空气冲击波作用于钢管内壁的冲击荷载压力峰值,间接测量了不耦合装药爆炸后的孔壁压力峰值。实验获得了6种不耦合装药工况下的爆破孔壁压力峰值测试数据,并计算了相应工况下实验值较准静态爆生气体压力的增大倍数,拟合结果表明压力增大倍数随不耦合系数的增大近似呈线性增长。同时也分析了部分试验工况下爆炸测试结果不理想的原因,研究成果可为轮廓爆破孔壁压力峰值的测试与计算提供参考。
  • 图  1  应变片布置示意图

    Figure  1.  Schematic diagram of strain gauge arrangement

    图  2  钢管与炸药安置示意图

    Figure  2.  Schematic diagram of steel pipe and explosive placement

    图  3  爆炸罐内钢管安放

    Figure  3.  Steel pipe placement in an explosion tank

    图  4  测试流程示意图

    Figure  4.  Schematic diagram of test flow

    图  5  钢管鼓胀与撕裂

    Figure  5.  Steel pile bulging and tearing under the blasting effect

    图  6  应变片撕裂特征曲线

    Figure  6.  Strain gauge tearing characteristic curve

    图  7  第一批次实验不同工况环向应变典型时程曲线

    Figure  7.  Circumferential strain typical time history curve under different conditions of the first batch experiment

    图  8  第二批次实验不同工况环向应变典型时程曲线

    Figure  8.  Circumferential strain typical time history curve under different conditions of the second bath experiment

    图  9  压力增大倍数规律曲线

    Figure  9.  Regular curve of pressure increase factor

    表  1  第一批次实验工况

    Table  1.   First batch experimental cases

    实验工况钢管内径/mm钢管外径/mm数量/根药卷直径/mm
    F-EI-14250411、16、21、26
    F-EI-25060411、16、21、26
    F-EI-37689416、21、26、32
    F-EI-490102 416、21、26、32
    F-EI-5110 121 416、21、26、32
    下载: 导出CSV

    表  2  第二批次实验工况

    Table  2.   Second batch experimental cases

    实验工况钢管内径/mm钢管外径/mm数量/根药卷直径/mm
    S-EI-172 88316
    S-EI-288108316
    S-EI-388108421
    S-EI-492108316
    S-EI-5107 121316
    S-EI-6107 127421
    下载: 导出CSV

    表  3  第二批次实验不同工况钢管内壁压力峰值(单位:MPa)

    Table  3.   Peak pressure of steel pipe inner wall under different conditions in the second bath experiment (units: MPa)

    实验工况实验序号通道a通道b通道c通道d平均值
    S-EI-1 (72/16)1280.79303.46251.44245.00270.17
    2261.73346.04231.87214.72263.59
    3275.59288.43262.36231.92264.58
    S-EI-2 (88/16)4180.54231.37224.38197.95208.56
    5199.43231.80224.57212.34217.04
    S-EI-3 (88/21)6损坏277.69259.54287.26274.83
    7321.77284.25299.88272.16294.51
    S-EI-4 (92/16)8188.27211.06200.80187.87197.00
    9170.45损坏191.53209.43190.47
    S-EI-5 (107/16)10156.42173.19163.86损坏164.49
    11126.06157.26损坏172.74152.02
    12143.53146.93158.72171.28155.12
    S-EI-6 (107/21)13235.77218.79178.93213.21211.68
    14230.38237.75252.18264.05246.09
    15229.18损坏236.71254.07239.99
    16294.95208.28255.38220.31244.73
    下载: 导出CSV

    表  4  压力增大倍数

    Table  4.   Pressure increase factor

    实验工况不耦合系数钢管内壁压力峰值/MPa准静态压力/MPa压力增大倍数
    88/21 (S-EI-3)4.19284.6717.4416.32
    72/16 (S-EI-1)4.50266.1114.4918.37
    107/21 (S-EI-6)5.10235.6210.4922.46
    88/16 (S-EI-2)5.50212.80 8.6024.74
    92/16 (S-EI-4)5.75193.74 7.6625.29
    107/16 (S-EI-5)6.68157.21 5.1930.30
    下载: 导出CSV
  • [1] 费鸿禄, 李守巨, 何庆志. 光面爆破装药不偶合系数的计算 [J]. 爆炸与冲击, 1992, 12(3): 270–274.

    FEI H L, LI S J, HE Q Z. Determintion of decouple coefficient and analysis of decouple action in the smooth blasting [J]. Explosion and Shock Waves, 1992, 12(3): 270–274.
    [2] 王伟, 李小春, 石露, 等. 深层岩体松动爆破中不耦合装药效应的探讨 [J]. 岩土力学, 2008, 29(10): 2837–2842. DOI: 10.16285/j.rsm.2008.10.009.

    WANG W, LI X C, SHI L, et al. Discussion on decoupled charge loosening blasting in deep rock mass [J]. Rock and Soil Mechanics, 2008, 29(10): 2837–2842. DOI: 10.16285/j.rsm.2008.10.009.
    [3] 刘云川, 汪旭光, 刘连生, 等. 不耦合装药条件下炮孔初始压力计算的能量方法 [J]. 中国矿业, 2009, 18(6): 104–107; 110. DOI: 10.3969/j.issn.1004-4051.2009.06.031.

    LIU Y C, WANG X G, LIU L S, et al. An energy method for calculate borehole pressure under decoupled charging [J]. China Mining Magazine, 2009, 18(6): 104–107; 110. DOI: 10.3969/j.issn.1004-4051.2009.06.031.
    [4] FRANCIS O. Measurements and prsesdictions of borehole pressure variations in model blasting system [C] // First International Symposium on Rock Fragmentation by Blasting. Lulea, Sweden, 1983.
    [5] HOMMERT P J, KUSZMAUL R L, PAR RISH R L. 爆破漏斗堵塞物作用的计算和试验研究[C] // 第2届爆破破岩国际会议译文集. 1990.
    [6] LI N. The numerical modelling of blasting loading, application of computer methods in rock mechanics [C] // Proceedings of International Symposium ACMIRME. Xi’an, China, 1993.
    [7] 闫国斌, 于亚伦. 空气与水介质不耦合装药爆破数值模拟 [J]. 工程爆破, 2009, 15(4): 13–19; 65. DOI: 10.3969/j.issn.1006-7051.2009.04.004.

    YAN G B, YU Y L. Numerical simulation of air and water medium decoupling charge blasting [J]. Engineering Blasting, 2009, 15(4): 13–19; 65. DOI: 10.3969/j.issn.1006-7051.2009.04.004.
    [8] 余德运, 刘殿书, 李洪超, 等. 柱状装药炮孔壁初始压力数值模拟及误差分析 [J]. 爆破, 2015, 32(4): 26–32. DOI: 10.3963/j.issn.1001-487X.2015.04.006.

    YU D Y, LIU D S, LI H C, et al. Numerical simulation and error analysis of preliminary shock pressure on borehole wall in columnar blasting [J]. Blasting, 2015, 32(4): 26–32. DOI: 10.3963/j.issn.1001-487X.2015.04.006.
    [9] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Experimental simulation of blast loading on structural elements using rarefaction waves-theoretical analysis [J]. International Journal of Impact Engineering, 2017, 102: 86–101. DOI: 10.1016/j.ijimpeng.2016.12.010.
    [10] SAHARAN M R, MITRI H S. Numerical procedure for dynamic simulation of discrete fractures due to blasting [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 641–670. DOI: 10.1007/s00603-007-0136-9.
    [11] YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: 10.1016/j.tust.2013.07.007.
    [12] 朱振海, 曲广建, 孙强, 等. 不耦合装药爆炸应力场的动光弹研究 [J]. 爆炸与冲击, 1991, 11(3): 252–257.

    ZHU Z H, QU G J, SUN Q, et al. Dynamic photoelastic investigation of the action of decouple [J]. Explosion and Shock Waves, 1991, 11(3): 252–257.
    [13] 凌伟明. 岩石爆破炮孔孔壁压力的试验研究 [J]. 矿冶, 2004, 13(4): 13–16. DOI: 10.3969/j.issn.1005-7854.2004.04.004.

    LING W M. Experimental research on explosion pressure on the wall of a borehole in rock [J]. Mining & Metallurgy, 2004, 13(4): 13–16. DOI: 10.3969/j.issn.1005-7854.2004.04.004.
    [14] TALHI K, BENSAKER B. Design of a model blasting system to measure peak p-wave stress [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(6): 513–519. DOI: 10.1016/S0267-7261(03)00018-6.
    [15] 宗琦, 罗强. 炮孔水耦合装药爆破应力分布特性试验研究 [J]. 实验力学, 2006, 21(3): 393–398. DOI: 10.3969/j.issn.1001-4888.2006.03.022.

    ZONG Q, LUO Q. Experimental study on distribution character of blasting stress when boreholes with water-couple charge [J]. Journal of Experimental Mechanics, 2006, 21(3): 393–398. DOI: 10.3969/j.issn.1001-4888.2006.03.022.
    [16] 陈明, 刘涛, 叶志伟, 等. 轮廓爆破孔壁压力峰值计算方法 [J]. 爆炸与冲击, 2019, 39(6): 064202. DOI: 10.11883/bzycj-2018-0171.

    CHEN M, LIU T, YE Z W, et al. Calculation methods for peak pressure on borehole wall of contour blasting [J]. Explosion and Shock Waves, 2019, 39(6): 064202. DOI: 10.11883/bzycj-2018-0171.
    [17] 罗兴柏, 张玉令, 丁玉奎. 爆炸力学理论教程[M]. 北京: 国防工业出版社, 2016: 254−259.
    [18] 陈勇军, 朱劲松, 孙国有, 等. 动载荷作用下区分厚壁圆筒和薄壁圆筒的一个准则 [J]. 压力容器, 2005, 22(6): 15–19. DOI: 10.3969/j.issn.1001-4837.2005.06.005.

    CHEN Y J, ZHU J S, SUN G Y, et al. A criterion to distinguish between thick-walled cylinder and thin-walled cylinder under dynamic loading [J]. Pressure Vessel Technology, 2005, 22(6): 15–19. DOI: 10.3969/j.issn.1001-4837.2005.06.005.
    [19] HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979.
  • 加载中
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
混凝土中多点聚集爆炸效应起爆参数优化设计
时本军 等, 爆炸与冲击, 2025
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
矩形管下气相螺旋爆轰的结构及传播方式
贾旭飞 等, 爆炸与冲击, 2024
侧向爆炸载荷下夹芯管的响应特性及吸能机理
杨巧 等, 高压物理学报, 2025
爆轰加载下tatb基钝感炸药的冲击-卸载-再冲击实验装置设计与模拟
樊辉 等, 高压物理学报, 2024
爆轰驱动下45钢半球壳膨胀断裂破片回收研究
张世文 等, 高压物理学报, 2023
Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: a review
Singh, Harpreet et al., FOOD CHEMISTRY, 2023
Transient rock breaking characteristics by successive impact of shield disc cutters under confining pressure conditions
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Electric current-induced directional slip of dislocation and grain boundary ordering
MATERIALS TODAY ADVANCES, 2024
Powered by
图(9) / 表(4)
计量
  • 文章访问数:  843
  • HTML全文浏览量:  366
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 修回日期:  2020-12-07
  • 网络出版日期:  2021-04-23
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回