• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

多孔材料下气体爆炸转扩散燃烧的特性研究

段玉龙 王硕 贺森 万琳

秦栋泽, 范宁军. 自毁装置的安全性和可靠性[J]. 爆炸与冲击, 2014, 34(1): 111-114. doi: 10.11883/1001-1455(2014)01-0111-04
引用本文: 段玉龙, 王硕, 贺森, 万琳. 多孔材料下气体爆炸转扩散燃烧的特性研究[J]. 爆炸与冲击, 2020, 40(9): 095401. doi: 10.11883/bzycj-2020-0009
Qin Dong-ze, Fan Ning-jun. Security and reliability of a self-destructive device[J]. Explosion And Shock Waves, 2014, 34(1): 111-114. doi: 10.11883/1001-1455(2014)01-0111-04
Citation: DUAN Yulong, WANG Shuo, HE Sen, WAN Lin. Characteristics of gas explosion to diffusion combustion under porous materials[J]. Explosion And Shock Waves, 2020, 40(9): 095401. doi: 10.11883/bzycj-2020-0009

多孔材料下气体爆炸转扩散燃烧的特性研究

doi: 10.11883/bzycj-2020-0009
基金项目: 重庆市自然科学基金(cstc2019jcyj-msxmX0324);重庆市教委科学技术研究项目(KJQN201801517);重庆科技学院校内科研基金(ck2017zkyb001)
详细信息
    作者简介:

    段玉龙(1982- ),男,博士,副研究员,dylnhz@126.com

  • 中图分类号: O383; X932

Characteristics of gas explosion to diffusion combustion under porous materials

  • 摘要: 为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。
  • 降低集束弹药未爆弹率是目前的关注热点之一, 在《特定常规武器公约》框架下, 对于《集束弹药议定书(草案)》提出的加装自毁装置(不同于发火装置)降低未爆弹率, 目前已经基本达成共识[1-2]。秦栋泽等[1]采用可靠性框图方法探讨了不同时机启动实现高效自毁问题, 认为自毁装置采用一道保险或在抛撒时启动自毁效率高, 而有学者对自毁装置仅一道保险或在抛撒时启动是否会带来弹药引信本身安全性问题尚有疑虑。本文中, 尝试通过理论建模和部分实验结果, 说明经过合理的设计可以保证自毁装置采用一道保险或在抛撒时启动不会降低其安全性, 如可利用起爆信息量大, 能提高其起爆可靠性。

    由于自毁装置主要目的是解决未爆弹问题, 需要避免瞎火, 同时不能由此引发安全性问题, 导致可靠起爆和弹药安全性的矛盾非常突出。自毁装置存在起爆信息识别率和起爆信息干扰度之间的矛盾。无论选择何种识别方法设计自毁装置, 总会出现两类错误。第一类是自毁预定条件不存在时, 由于干扰的存在, 自毁启动威胁弹药安全, 这个概率为干扰度Pe0; 第二类是自毁预定条件存在, 而自毁装置判断为不存在, 这个概率为误识率Pe1。第一类错误会导致引信的安全问题, 在自毁装置的错误指令下, 可能出现早炸。第二类错误会导致瞎火。在引信自毁装置设计中, 这两类问题所带来的危害不同, 由于缺乏先验概率, 自毁装置起爆信号检测不宜采用最小错误概率准则和最小平均风险准则, 在设计和评价环境中采用奈曼-皮尔逊(Neyman-Pearson)准则较合理。即, 保持第一类错误概率Pe0为固定的允许值的同时, 使第二类错误概率Pe1最小。这种准则兼顾了安全性和可靠性两大性能, 为各种类型的自毁装置安全性分析建立了统一的评价标准。根据自毁装置的设计准则, 自毁装置的安全性指标规定为必须满足环境干扰度指标α。一般自毁装置由环境识别器、保险器、状态控制器、起爆元件组成, 自毁装置可能有4种安全失效模式。第一种, 环境识别器失效, 保险器、状态控制器、起爆元件均可靠; 第二种, 保险器发生安全性失效、状态控制器工作可靠、起爆元件工作可靠; 第三种, 状态控制器失效、起爆元件工作可靠; 第四种, 起爆元件原发性失效。因此自毁装置安全失效率的计算式为:

    PSDe0=PEe0RSRTRD+PSe0RTRD+PTe0RD+PDe
    (1)

    式中:Pe0SD为自毁装置失效率; Pe0E为环境识别器安全失效率; Pe0S为保险器的安全失效率; Pe0T为状态控制器安全失效率; Pe0D为爆炸元件的原发性安全失效率; RS为保险器的可靠度; RT为状态控制器的可靠度; RD为爆炸元件的可靠度。

    为了研究不同结构原理的自毁装置, 对自毁装置进行了理论抽象。自毁装置本质输出起爆信息, 起爆信息是从环境信源中提取一定量的信息并转变为信号, 自毁装置要达到规定的可靠性指标, 就有一个必须获得的最小信息量Imin, 若自毁装置获取的信息量大于最小信息量, 则性能可能趋于更优, 自毁可靠性高。

    自毁装置的实质, 是在引信出厂到战斗部作用于目标的全寿命周期T中, 选择对应的唯一的抛撒主发火失败后, 输出起爆信号起爆爆炸元件。定义自毁所必须处理的最小信息量Imin等于从引信所经历的N次操作中选择不可逆抛撒过程的熵H0, 即:

    Imin=H0
    (2)
    H0=Ni=1Pilog2Pi
    (3)

    式中:N为引信所经历的操作总次数; Pi为第i次操作为抛撒过程的概率。

    由于安全性比可靠性指标苛刻, 所以优先考虑安全性指标[3]N是随机变量, 要考虑一个自毁装置的安全性总是将问题转化为多个自毁装置的安全失效率, 由此自毁装置的安全性指标α相当于自毁装置在[α-1]次操作中, 其环境识别器只能有一次将环境干扰判断为启动条件,

    N=[α1]
    (4)

    式中:[X]表示不大于X的最大正整数。

    考虑对安全性最不利条件, 认为Pi等概率分布, 即Pi=1/N,

    Imin=(log21N)Ni=11N=log2N=log2[1α]
    (5)

    现有的自毁装置输出起爆信息识别方法主要有两种, 一种为顺序识别, 即利用M个特定的阈值开关获取信息, 开关按特定的顺序动作所包含的信息量。顺序识别方法包含的开关状态数为M!, 在这M!个状态中, 只有一种状态对应于自毁预定条件的存在, 假设Xi状态发生的概率为P(xi)(i=1, 2, …, M!), 则顺序识别方法所获取的信息量IM为:

    IM=M!i=1P(xi)log2P(xi)
    (6)

    考虑最不利条件, 顺序识别方法的所有M!个状态等概率发生:

    P(x1)=P(x2)==P(xM!)
    (7)
    M!i=1P(xi)=1
    (8)
    P(x1)=1M!
    (9)

    将式(9)代入式(6), 得:

    IM=log2M!
    (10)

    顺序时间窗识别方法, 即M个开关按预定顺序并在一定的时间区域内闭合, 才判断为自毁预定条件存在。M个开关所具有得状态数为(M-1)!2M-1, 其中(M-1)!为M个开关顺序闭合所拥有的状态数, 2M-1为每一种顺序闭合时, M-1个开关是否处于规定时间区内所处的状态(减1是因为有一个开关为时间基准)。假设Xi状态发生的概率为P(xi)(i=1, 2, …, (M-1)!2M-1), 则顺序时间窗识别方法所获取的信息量IM为:

    IM=(M1)!22h1i=1P(xi)log2P(xi)
    (11)

    考虑最不利条件, 顺序时间窗识别方法的所有状态等概率发生:

    P(x1)=P(x2)==P(x(M1)!2M1)
    (12)

    由于

    (M1)!2M1i=1P(xi)=1
    (13)
    P(x1)=1(M1)!21M
    (14)

    将式(14)代入式(11), 得:

    IM=M1+log2(M1)!
    (15)

    选取3个典型引信, 分别为M85子弹药引信(自毁装置二道保险)、XM1161引信(自毁装置一道保险)和M230SD引信(自毁装置抛撒启动), 进行分析。安全性与可靠性的结果见表 1, PT为靶场测试起爆率。

    表  1  安全性与可靠性结果比较
    Table  1.  The results of safety and reliability
    引信 环境识别器 保险器 状态控制器 爆炸元件 Pe0SD/10-6 IM PT/%
    M85子弹药引信 飘带 飘带 滑块 雷管 3.95 log22 < 94.72
    XM1161引信 飘带 飘带 滑块、转子 雷管 3.92 log26 94.72
    M230SD引信 电池 电池 处理器、电容 雷管 3.92 2+log22 99.83
    下载: 导出CSV 
    | 显示表格

    M85子弹药引信自毁装置作用原理:子弹抛撒后, 在空气气动力作用下, 飘带打开, 拉力保险解除对滑块的约束, 在离心力作用下, 离心保险解除对滑块的约束, 滑块运动到位后, 自毁锤点燃延期管, 延时后点燃雷管, 子弹药自毁[4]。XM1161引信自毁装置作用原理:子弹抛撒后, 在空气气动力作用下, 飘带打开, 拉力保险解除对滑块的约束, 滑块释放转子, 转子启动后点燃延期管, 延时后点燃雷管, 子弹药自毁[5]。M230SD引信自毁装置作用原理:子弹抛撒后, 电池上电, 处理器定时, 定时时间到后对发火电容充电, 子弹药自毁[6]

    按照相关规定, 要求安全系统失效率不超过10-6, 即假设任一器部件的安全失效率不超过百万分之一, 各元件的可靠度都为0.99。依据公式(1), 可求得XM1161引信、M230SD引信安全失效率低于M85子弹药引信, M85子弹药引信安全失效率为3.95×10-6, XM1161引信、M 230SD引信安全失效率为3.92×10-6。M85子弹药引信在使用过程中安全失效率满足要求, 而限于安全性失效率在10-6这个数量级, 很难通过实验验证, 理论计算说明, 合理设计的自毁装置仅一道保险或在抛撒时启动不一定带来弹药引信本身安全性问题。因此, XM1161引信和M 230SD的引信安全性也应能满足要求。且一般电子元件的可靠度要高于机械元件, 因此实际情况下, M230SD安全失效率应该低于XM1161引信。

    M85子弹药引信、XM1161引信起爆信息利用采用顺序识别法(由于延期药管点燃后无法施控, 不属于顺序时间窗方法), M230SD引信采用顺序时间窗识别法具有时间窗口(定时后仍有电容充电过程, 不同于延期管直接起爆雷管), M85子弹药引信开关为飘带和滑块, 采用顺序识别法, XM1161引信开关为飘带、滑块和转子, 采用顺序识别法, M230SD引信采用顺序时间窗识别法, 开关为电池、处理器和电容。简易计算, M230SD引信起爆信息输出量大于XM1161引信, XM1161引信起爆信息输出量大于M85子弹药引信, 与文献[1]采用可靠度框图的起爆效率高低排序结果一致, 说明在器件本身可靠性相同时, 能够采用的起爆信息量大时, 起爆可靠性高。依据真实的靶场测试数据, M230SD引信的可靠性也高于XM1161引信、M85子弹药引信, 一方面由于器件本身的可靠度高, 另一方面也说明, 由于其起爆信息利用量大, 减小了环境干扰, 引信装置起爆度高。

    初步完成了自毁装置的抽象, 建立了自毁装置安全性理论计算模型, 在一定假设下计算结果说明, 自毁装置一道保险和自毁装置在抛撒时启动不一定降低弹药引信本身的安全性。在自毁装置的研究中引入了信息论方法, 建立了起爆信息输出量计算模型, 对有关实例进行了分析, 验证了理论模型的合理性, 同时说明, 在器件本身可靠性相同时, 若起爆信息利用量大, 引信装置起爆度高。

  • 图  1  实验系统图

    Figure  1.  Schematic diagram of experimental system

    图  2  多孔材料

    Figure  2.  The porous materials

    图  3  火焰锋面速度均值

    Figure  3.  Mean speed of flame front

    图  4  体积分数9.5%的甲烷爆炸火焰传播过程

    Figure  4.  Flame propagation of methane explosion with a volume fraction of 9.5%

    图  5  每英寸长度孔数为10的多孔材料对火焰的影响

    Figure  5.  Effect of the porous material with 10 pores per inch in length

    图  6  每英寸长度孔数为20的多孔材料对火焰的影响

    Figure  6.  Effect of the porous material with 20 pores per inch in length

    图  7  每英寸长度孔数为30的多孔材料对火焰的影响

    Figure  7.  Effect of the porous material with 30 pores per inch in length

    图  8  火焰锋面接触多孔材料前的传播速度

    Figure  8.  Speed of flame front before impacting on porous materials

    图  9  每英寸长度孔数为10的多孔材料下的压力时程曲线

    Figure  9.  Histories of pressure for porous material with 10 pores per inch in length

    图  10  每英寸长度孔数为20多孔材料的压力时程曲线

    Figure  10.  Histories of pressure for porous material with 20 pores per inch in length

    图  11  每英寸长度孔数为20多孔材料的压力时程曲线

    Figure  11.  Histories of pressure for porous material with 30 pores per inch in length

    图  12  每英寸长度孔数为20的多孔材料下火焰淬熄后压力变化

    Figure  12.  Pressure change after quenching of flame affected by the porous material with 20 pores per inch in length

    图  13  每英寸长度孔数为30的多孔材料下火焰淬熄后压力变化

    Figure  13.  Pressure change after quenching of flame affected by the porous material with 30 pores per inch in length

    图  14  激波管内温度与密度变化示意图

    Figure  14.  Schematic of temperature and density change in duct

    表  1  实验工况

    Table  1.   Experimental conditions

    序号δ厚度/cm
    1102
    2104
    3106
    4202
    5204
    6206
    7302
    8304
    9306
    下载: 导出CSV
  • [1] SUN J H, ZHAO Y, WEI C R, et al. The comparative experimental study of the porous materials suppressing the gas explosion [J]. Procedia Engineering, 2011, 26: 954–960. DOI: 10.1016/j.proeng.2011.11.2262.
    [2] PRAMOD B, Prudhvi R J, PARASHAR C H, et al. Attenuation of shock waves by using porous media [C]//AIP Conference Proceedings. Karnataka, India, 2019: 030015. DOI: 10.1063/1.5092918.
    [3] OLIM M, DONGEN M, KITAMURA T, et al. Numerical simulation of the propagation of shock waves in compressible open-cell porous foams [J]. International Journal of Multiphase Flow, 1994, 20(3): 557–568. DOI: 10.1016/0301-9322(94)90029-9.
    [4] KITAGAWA K, YASUHARA M, TAKAYAMA K. Attenuation of shock waves propagating in polyurethane foams [J]. Shock Waves, 2006, 15(6): 437–445. DOI: 10.1007/s00193-006-0042-1.
    [5] 邵继伟, 庄春吉, 王志荣, 等. 组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果 [J]. 爆炸与冲击, 2018, 38(4): 905–912. DOI: 10.11883/bzycj-2017-0064.

    SHAO J W, ZHUANG C J, WANG Z R, et al. Explosion suppression effect of CH4/air by combined porous materials in a container piping system [J]. Explosion and Shock Waves, 2018, 38(4): 905–912. DOI: 10.11883/bzycj-2017-0064.
    [6] 梁滔, 孙永夺, 杨锡军. 泡沫镍对甲烷-空气预混气体爆燃超压影响的研究 [J]. 中国安全生产科学技术, 2017, 13(8): 170–174. DOI: 10.11731/j.issn.1673-193x.2017.08.027.

    LIANG T, SUN Y D, YANG X J. Study on effect of nickel foam on deflagration overpressure of methane-air premixed gas [J]. Journal of Safety Science and Technology, 2017, 13(8): 170–174. DOI: 10.11731/j.issn.1673-193x.2017.08.027.
    [7] 陈鹏, 黄福军, 何昕, 等. 多孔材料对管道内甲烷-空气预混火焰传播的影响 [J]. 工业安全与环保, 2016, 42(1): 49–52. DOI: 10.3969/j.issn.1001-425X.2016.01.015.

    CHEN P, HUANG F J, HE X, et al. Effects of different porous foam upon premixed methane/air flame propagation in closed ducts [J]. Industrial Safety and Environmental Protection, 2016, 42(1): 49–52. DOI: 10.3969/j.issn.1001-425X.2016.01.015.
    [8] 陈鹏, 孙永夺. 泡沫金属对甲烷/空气爆燃火焰的淬熄实验研究 [J]. 中国安全生产科学技术, 2017, 13(7): 37–41. DOI: 10.11731/j.issn.1673-193x.2017.07.006.

    CHEN P, SUN Y D. Experiment study on quenching effect of foam metal on methane-air deflagration flame [J]. Journal of Safety Science and Technology, 2017, 13(7): 37–41. DOI: 10.11731/j.issn.1673-193x.2017.07.006.
    [9] 魏春荣, 徐敏强, 王树桐, 等. 多孔材料抑制瓦斯爆炸火焰波的实验研究 [J]. 中国矿业大学学报, 2013, 42(2): 206–213. DOI: 10.13247/j.cnki.jcumt.2013.02.008.

    WEI C R, XU M Q, WANG S T, et al. Experiment of porous materials for suppressing the gas explosion flame wave [J]. Journal of China University of Mining & Technology, 2013, 42(2): 206–213. DOI: 10.13247/j.cnki.jcumt.2013.02.008.
    [10] 魏春荣, 徐敏强, 孙建华, 等. 多孔材料抑制瓦斯爆炸传播的实验及机理 [J]. 功能材料, 2012, 43(16): 2247–2250;2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.

    WEI C R, XU M Q, SUN J H, et al. Experiment and mechanism of porous materials for suppressing the gas explosion [J]. Journal of Functional Materials, 2012, 43(16): 2247–2250;2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.
    [11] 孙建华, 赵益, 魏春荣, 等. 金属丝网和泡沫陶瓷组合体抑制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2012, 37(7): 1156–1160. DOI: 10.13225/j.cnki.jccs.2012.07.018.

    SUN J H, ZHAO Y, WEI C R, et al. Experimental study of combination of metal wire mesh and foam ceramic for suppressing the gas explosion [J]. Journal of China Coal Society, 2012, 37(7): 1156–1160. DOI: 10.13225/j.cnki.jccs.2012.07.018.
    [12] 聂百胜, 何学秋, 张金锋, 等. 泡沫陶瓷对瓦斯爆炸过程影响的实验及机理 [J]. 煤炭学报, 2008(8): 903–907. DOI: 10.3321/j.issn:0253-9993.2008.08.013.

    NIE B S, HE X Q, ZHANG J F, et al. The experiments and mechanism of foam ceramics affecting gas explosion process [J]. Journal of China Coal Society, 2008(8): 903–907. DOI: 10.3321/j.issn:0253-9993.2008.08.013.
    [13] 聂百胜, 何学秋, 张金锋, 等. 泡沫陶瓷对瓦斯爆炸火焰传播的影响 [J]. 北京理工大学学报, 2008(7): 573–576. DOI: 10.15918/j.tbit1001-0645.2008.07.001.

    NIE B S, HE X Q, ZHANG J F, et al. Effect of foam ceramics upon gas explosion flame propagation [J]. Transactions of Beijing Institute of Technology, 2008(7): 573–576. DOI: 10.15918/j.tbit1001-0645.2008.07.001.
    [14] 蒋新生, 谢威, 杨卫, 等. 网状材料抑制中尺度密闭空间爆炸试验研究 [J]. 中国安全科学学报, 2017, 27(12): 20–25. DOI: 10.16265/j.cnki.issn1003-3033.2017.12.004.

    JIANG X S, XIE W, YANG W, et al. Experimental study on suppression of gasoline-air mixture explosion in narrow-confined space using polymer mesh [J]. China Safety Science Journal, 2017, 27(12): 20–25. DOI: 10.16265/j.cnki.issn1003-3033.2017.12.004.
    [15] 温小萍, 郭志东, 王发辉, 等. 一维多孔介质和超细水雾协同抑制瓦斯爆炸试验 [J]. 安全与环境学报, 2020, 20(2): 539–547. DOI: 10.13637/j.issn.1009-6094.2019.0114.

    WEN X P, GUO Z D, WANG F H, et al. Experimental approach to the synergistic inhibition of the gas explosion through the one-D porous media and the ultrafine water mist [J]. Journal of Safety and Environment, 2020, 20(2): 539–547. DOI: 10.13637/j.issn.1009-6094.2019.0114.
    [16] 余明高, 刘梦茹, 温小萍, 等. 超细水雾-多孔材料协同抑制瓦斯爆炸实验研究 [J]. 煤炭学报, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.

    YU M G, LIU M R, WEN X P, et al. Synergistic inhibition of gas explosion by ultrafine water mist-porous materials [J]. Journal of China Coal Society, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.
    [17] 王大龙, 周心权, 张玉龙, 等. 煤矿瓦斯爆炸火焰波和冲击波传播规律的理论研究与实验分析 [J]. 矿业安全与环保, 2007(2): 1–3;89. DOI: 10.3969/j.issn.1008-4495.2007.02.001.

    WANG D L, ZHOU X Q, ZHANG Y L, et al. Theoretic study and experimental analysis of propagation law of mine gas explosion flame wave and shock wave [J]. Mining Safety & Environmental Protection, 2007(2): 1–3;89. DOI: 10.3969/j.issn.1008-4495.2007.02.001.
    [18] 段玉龙, 王海燕, 程彩霞, 等. 瓦斯爆炸火焰波热作用下巷道煤壁温度变化规律的探讨与分析 [J]. 煤矿安全, 2010, 41(9): 100–104. DOI: 10.13347/j.cnki.mkaq.2010.09.024.

    DUAN Y L, WANG H Y, CHEN C X, et al. Discussion and analysis on the variation law of coal wall temperature under the action of flame wave heat of gas explosion [J]. Safety in Coal Mines, 2010, 41(9): 100–104. DOI: 10.13347/j.cnki.mkaq.2010.09.024.
    [19] ZHANG D, NIE B S, WANG C, et al. Preliminary research on porous foam ceramics against gas explosions in goaf [J]. Procedia Engineering, 2011, 26: 1330–1336. DOI: 10.1016/j.proeng.2011.11.2308.
    [20] NIE B S, ZHANG R M, HE X Q, et al. Potential applications of foam ceramics in gas explosion prevention [J]. Advanced Materials Research, 2011: 284–286. DOI: 10.4028/www.scientific.net/amr.284-286.1330.
    [21] 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D].合肥: 中国科学技术大学, 2013: 5−6.
  • 期刊类型引用(14)

    1. 成云霞,贾梦雷,李焱,杜尊峰,韩晨光. 多种舰艇的医疗卫生舱室爆炸损伤模拟研究. 医疗卫生装备. 2025(01): 27-32 . 百度学术
    2. 傅耀宇,贵新成,周云波,刘家志,石昊,王铮. 破片杀伤战斗部空爆状态下车顶夹芯板防护性能分析与优化设计. 兵工学报. 2024(01): 69-84 . 百度学术
    3. 高钦和,黄通,钱秉文,沈飞,王冬,高蕾. 导弹发射车抗毁伤能力分析与评估技术研究综述. 国防科技大学学报. 2024(02): 182-196 . 百度学术
    4. 肖翠. 西南地区灌区背景下混凝土水工建筑物问题分析及加固修补方法设计. 水利科技与经济. 2024(04): 85-89 . 百度学术
    5. 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 . 百度学术
    6. 罗家元,付用森,陈哲伦,李世岳,王家林. 空中爆炸载荷作用下层状复合材料结构动态响应特性分析. 固体力学学报. 2024(05): 679-693 . 百度学术
    7. 罗家元,陈哲伦,李世岳,高聪. 典型防护材料空爆载荷作用下动态响应及抗冲击设计研究现状. 复合材料科学与工程. 2024(10): 150-160 . 百度学术
    8. 岳宝兵,金翰呈,李雄姿,杨文涛,李小双,肖定军. 聚脲涂覆钢板复合结构抗爆性能研究. 化工矿物与加工. 2023(06): 6-12 . 百度学术
    9. 张之凡,李海龙,张桂勇,宗智,姜宜辰. 聚能装药水下爆炸冲击波和侵彻体载荷作用时序研究. 爆炸与冲击. 2023(10): 3-14 . 本站查看
    10. 周猛,梁民族,林玉亮. 冲击波-破片联合载荷对固支方板的耦合作用机理. 兵工学报. 2023(S1): 99-106 . 百度学术
    11. 黄涛,陈威,彭帅,施锐,柴威,李晓彬. 典型舱室在战斗部内爆下的载荷及毁伤特性试验研究. 中国舰船研究. 2023(06): 167-176 . 百度学术
    12. 李坤,高旭东,董晓亮. 多层橡胶陶瓷复合装甲的抗侵彻性能研究. 兵器装备工程学报. 2021(07): 116-121 . 百度学术
    13. 欧阳科峰,姚新,杨阳,李洪鑫. 迎弹面止裂层对陶瓷复合结构抗侵彻性能影响试验研究. 防护工程. 2021(04): 6-10 . 百度学术
    14. 程远胜,谢杰克,李哲,刘均,张攀. 冲击波和破片群联合作用下高强聚乙烯/泡沫铝夹芯复合结构毁伤响应特性. 兵工学报. 2021(08): 1753-1762 . 百度学术

    其他类型引用(9)

  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  3816
  • HTML全文浏览量:  1161
  • PDF下载量:  75
  • 被引次数: 23
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-06-17
  • 刊出日期:  2020-09-01

目录

/

返回文章
返回