回转体高速倾斜入水的流场特性及结构响应

高英杰 孙铁志 张桂勇 尤天庆 殷志宏 宗智

高英杰, 孙铁志, 张桂勇, 尤天庆, 殷志宏, 宗智. 回转体高速倾斜入水的流场特性及结构响应[J]. 爆炸与冲击, 2020, 40(12): 123301. doi: 10.11883/bzycj-2020-0014
引用本文: 高英杰, 孙铁志, 张桂勇, 尤天庆, 殷志宏, 宗智. 回转体高速倾斜入水的流场特性及结构响应[J]. 爆炸与冲击, 2020, 40(12): 123301. doi: 10.11883/bzycj-2020-0014
GAO Yingjie, SUN Tiezhi, ZHANG Guiyong, YOU Tianqing, YIN Zhihong, ZONG Zhi. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body[J]. Explosion And Shock Waves, 2020, 40(12): 123301. doi: 10.11883/bzycj-2020-0014
Citation: GAO Yingjie, SUN Tiezhi, ZHANG Guiyong, YOU Tianqing, YIN Zhihong, ZONG Zhi. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body[J]. Explosion And Shock Waves, 2020, 40(12): 123301. doi: 10.11883/bzycj-2020-0014

回转体高速倾斜入水的流场特性及结构响应

doi: 10.11883/bzycj-2020-0014
基金项目: 国家自然科学基金(51639003,51709042);中央高校基本科研业务费专项(DUT2017TB05);中国博士后科学基金(2018M631791,2019T120211);工信部高技术船舶科研项目(2017-614);辽宁省自然科学基金(20180550619);辽宁省“兴辽英才计划”(XLYC1908027);海洋工程国家重点实验室开放基金(1803)
详细信息
    作者简介:

    高英杰(1994- ),男,硕士研究生,yingjie_gao@foxmail.com

    通讯作者:

    孙铁志(1986- ),男,博士,副教授,suntiezhi@dlut.edu.cn

  • 中图分类号: O352

Flow characteristics and structure response of high-speed oblique water-entry for a revolution body

  • 摘要: 回转体高速入水过程涉及液体和固体的耦合作用,是一个复杂的非线性、非定常过程。为研究回转体高速入水的结构动响应及流场演变规律,本文中基于STAR-CCM+和ABAQUS平台,建立了回转体高速入水的双向流固耦合数值模型,开展了不同入水速度的回转体高速倾斜入水流固耦合数值计算。结果表明:数值计算的入水速度、位移曲线和空泡形态与实验结果良好吻合,验证了流固耦合方法的有效性;回转体倾斜高速入水的载荷先集中在触水部分边缘处,后集中于回转体底部中心处;流固耦合方法的入水冲击载荷峰值小于刚体的,弹性回转体的载荷曲线产生明显波动;撞水阶段,回转体空泡呈现不对称形态,随着入水加深,空泡不对称性变弱;入水速度60 m/s下,空泡发生表面闭合,回转体入水初速度越快,空泡表面闭合越晚;冲击载荷与入水速度有关,入水速度越大,峰值出现越早,震荡越明显,速度超过100 m/s时,回转体产生塑性形变。
  • 图  1  双向耦合求解过程

    Figure  1.  Computing process of fluid-structure interaction method

    图  2  计算域

    Figure  2.  Computational domain

    图  3  流体网格模型

    Figure  3.  Mesh of fluid domain

    图  4  速度衰减曲线

    Figure  4.  Velocity attenuation curves

    图  5  侵蚀位移曲线

    Figure  5.  Erosion displacement curves

    图  6  不同时刻的空泡形态

    Figure  6.  Cavity features at different times

    图  7  回转体轴向、底部径向的单元分布

    Figure  7.  Element distribution of revolution body

    图  8  回转体的应力沿轴向分布曲线

    Figure  8.  Equivalent stress curves of elements along axis

    图  9  不同时刻回转体底部应力分布

    Figure  9.  Stress distributions of revolution body bottom at different times

    图  10  回转体底部的应力沿径向分布曲线

    Figure  10.  Equivalent stress curves of bottom elements along radius

    图  11  回转体底部的应变沿径向分布曲线

    Figure  11.  Strain curves of bottom elements along radius

    图  12  不同时刻的空泡演变

    Figure  12.  Cavity features at different times

    图  13  不同时刻的应力分布

    Figure  13.  Stress distributions at different times

    图  14  速度60 m/s倾斜入水的空泡演变

    Figure  14.  Cavity features for oblique water-entry at v0=60 m/s

    图  15  入水速度80 m/s时回转体底部中心点压力曲线

    Figure  15.  Pressure curve of bottom central point at v0=80 m/s

    图  16  速度80 m/s入水时速度曲线

    Figure  16.  Velocity curves at v0=80 m/s

    图  17  归一化的速度衰减曲线

    Figure  17.  Normalized velocity attenuation curves

    图  18  回转体中心单元的有效应力曲线

    Figure  18.  Equivalent stress curves of central elements

    图  19  空泡形态对比

    Figure  19.  Comparisons of cavity features

    表  1  不同入水速度的压力峰值

    Table  1.   Peak pressures at different initial water entry velocities

    入水速度/(m·s−1)压力峰值/MPa
    CFDFSI
    60 9.93 9.42
    8016.0315.59
    10027.9225.12
    下载: 导出CSV
  • [1] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [2] Von KARMAN T H. The impact on seaplane floats during landing [R]. Washington DC: National Advisory Committee on Aeronautics, 1929: 309−313. DOI: 10.1115/1.4023571.
    [3] WAGNER H. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. DOI: 10.1002/zamm.19320120402.
    [4] GAVRILENKO V N, KUBENKO V D. Plane problem of rigid body penetration into a compressible fluid [J]. Soviet Applied Mechanics, 1985, 21(4): 345–352. DOI: 10.1007/BF00886581.
    [5] WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography. Paper Ⅱ [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1900, 194: 175–199. DOI: 10.1098/rsta.1900.0016.
    [6] MAY A. Effect of surface condition of a sphere on its water-entry cavity [J]. Journal of Applied Physics, 1951, 22(10): 1219–1222. DOI: 10.1063/1.1699831.
    [7] MAY A, WOODHULL J C. The virtual mass of a sphere entering water vertically [J]. Journal of Applied Physics, 1950, 21(12): 1285–1289. DOI: 10.1063/1.1699592.
    [8] ABELSON H I. Pressure measurements in the water-entry cavity [J]. Journal of Fluid Mechanics, 1970, 44(1): 129–144. DOI: 10.1017/S0022112070001738.
    [9] PANAHI R. Simulation of water-entry and water-exit problems using a moving mesh algorithm [J]. Journal of Theoretical and Applied Mechanics, 2012, 42(2): 79–92.
    [10] ERFANIAN M R, ANBARSOOZ M, RAHIMI N, et al. Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem [J]. Ocean Engineering, 2015, 104: 397–404. DOI: 10.1016/j.oceaneng.2015.05.024.
    [11] NEAVES M D, EDWARDS J R. All-speed time-accurate underwater projectile calculations using a preconditioning algorithm [J]. Journal of Fluids Engineering, 2006, 128(2): 284–296. DOI: 10.1115/1.2169816.
    [12] 孙辉, 卢炽华, 何友声. 二维楔形体冲击入水时的流固耦合响应的实验研究 [J]. 水动力学研究与进展, 2003, 18A(1): 104–109. DOI: 10.3969/j.issn.1000-4874.2003.01.018.

    SUN H, LU C H, HE Y S. Experimental research on the fluid-structure interaction in water entry of 2D elastic wedge [J]. Journal of Hydrodynamics, 2003, 18A(1): 104–109. DOI: 10.3969/j.issn.1000-4874.2003.01.018.
    [13] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [14] 郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
    [15] 陈诚, 袁绪龙, 党建军, 等. 超空泡航行器20°角倾斜入水冲击载荷特性试验研究 [J]. 兵工学报, 2018, 39(6): 1159–1164. DOI: 10.3969/j.issn.1000-1093.2018.06.016.

    CHEN C, YUAN X L, DANG J J, et al. Experimental investigation into impact load during oblique water-entry of a supercavitating vehicle at 20° [J]. Acta Armamentarii, 2018, 39(6): 1159–1164. DOI: 10.3969/j.issn.1000-1093.2018.06.016.
    [16] YAN G X, PAN G, SHI Y, et al. Experimental and numerical investigation of water impact on air-launched AUVs [J]. Ocean Engineering, 2018, 167: 156–168. DOI: 10.1016/j.oceaneng.2018.08.044.
    [17] 钱铖铖, 余春华, 穆青, 等. 发射速度和发射角度对射弹高速入水流动的影响 [J]. 兵器装备工程学报, 2019, 40(7): 35–39; 50. DOI: 10.11809/bqzbgcxb2019.07.008.

    QIAN C C, YU C H, MU Q, et al. Numerical research of effects of launch speed and launch angle on water entry of high-speed projectile [J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 35–39; 50. DOI: 10.11809/bqzbgcxb2019.07.008.
    [18] 张佳悦, 李达钦, 吴钦, 等. 航行体回收垂直入水空泡流场及水动力特性研究 [J]. 力学学报, 2019, 51(3): 803–812. DOI: 10.6052/0459-1879-18-364.

    ZHANG J Y, LI D Q, WU Q, et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803–812. DOI: 10.6052/0459-1879-18-364.
    [19] 何春涛, 王聪, 闵景新, 等. 回转体匀速垂直入水早期空泡数值模拟研究 [J]. 工程力学, 2012, 29(4): 237–243.

    HE C T, WANG C, MIN J X, et al. Numerical simulation of early air-cavity of cylinder cone with vertical water-entry [J]. Engineering Mechanics, 2012, 29(4): 237–243.
    [20] 侯昭, 孙铁志, 张桂勇, 等. 回转体倾斜入水空泡试验及六自由度数值计算研究 [J]. 宇航总体技术, 2017, 1(4): 38–45.

    HOU Z, SUN T Z, ZHANG G Y, et al. Experimental investigation and 6-DOF simulation of oblique water-entry cavity of revolution body [J]. Astronautical Systems Engineering Technology, 2017, 1(4): 38–45.
    [21] 黄志刚, 孙铁志, 杨碧野, 等. 平头锥型回转体高速入水结构强度数值分析 [J]. 爆炸与冲击, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.

    HUANG Z G, SUN T Z, YANG B Y, et al. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry [J]. Explosion and Shock Waves, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
    [22] 陈宇, 曹红松, 王智军, 等. 一种新型防空MEFP的设计与仿真 [J]. 现代防御技术, 2013, 41(2): 202–206; 211. DOI: 10.3969/j.issn.1009-086x.2013.02.037.

    CHEN Y, CAO H S, WANG Z J, et al. New type of air defense MEFP [J]. Modern Defense Technology, 2013, 41(2): 202–206; 211. DOI: 10.3969/j.issn.1009-086x.2013.02.037.
    [23] AGMELL M, AHADI A, STÅHL J E. A numerical and experimental investigation of the deformation zones and the corresponding cutting forces in orthogonal cutting [J]. Advanced Materials Research, 2011, 223: 152–161. DOI: 10.4028/www.scientific.net/AMR.223.152.
    [24] CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles [J]. Ocean Engineering, 2019, 175: 16–24. DOI: 10.1016/j.oceaneng.2019.02.021.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1401
  • HTML全文浏览量:  754
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-05-27
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回