聊聊动态塑性和黏塑性

王礼立 董新龙

王礼立, 董新龙. 聊聊动态塑性和黏塑性[J]. 爆炸与冲击, 2020, 40(3): 031101. doi: 10.11883/bzycj-2020-0024
引用本文: 王礼立, 董新龙. 聊聊动态塑性和黏塑性[J]. 爆炸与冲击, 2020, 40(3): 031101. doi: 10.11883/bzycj-2020-0024
WANG Lili, DONG Xinlong. Talk about dynamic plasticity and viscoplasticity[J]. Explosion And Shock Waves, 2020, 40(3): 031101. doi: 10.11883/bzycj-2020-0024
Citation: WANG Lili, DONG Xinlong. Talk about dynamic plasticity and viscoplasticity[J]. Explosion And Shock Waves, 2020, 40(3): 031101. doi: 10.11883/bzycj-2020-0024

聊聊动态塑性和黏塑性

doi: 10.11883/bzycj-2020-0024
详细信息
    作者简介:

    王礼立(1934- ),男,教授,博士生导师,wanglili@nbu.edu.cn本文根据作者在2019年全国冲击动力学前沿论坛(2019年12月13~15日,海南万宁)的大会报告《聊聊动态塑性、黏塑性和损伤演化》删减整理而成

  • 中图分类号: O347.1

Talk about dynamic plasticity and viscoplasticity

  • 摘要: 固体力学研究者致力于具有应力-应变本构关系(以下简称为形变型本构关系)的变形体的力学响应研究,而流体力学研究者致力于具有应力-应变率本构关系(以下简称为流动型本构关系)的流动体的力学响应研究。当涉及结构和材料的动态塑性时,到底应该用“塑性变形”还是“塑性流动”来表示?本文从宏观塑性本构理论和微观位错动力学机理两个角度,分别讨论并指出塑性本构关系属于流动型黏塑性率相关本构关系,且同时适用于加载和卸载;因而不应该用应力-应变图来描述塑性加-卸载过程。弹塑性本构关系则是一种形变型和流动型本构关系的耦合。
  • 图  1  (a) 在τ-γ坐标中表示的Hooke弹性定律(τ=);(b)在τ-$\dot \gamma $坐标中表示的Newton黏性定律(τ=η$\dot \gamma $);(c) 在τ-γ坐标中表示的Newton黏性定律(τ=η$\dot \gamma $

    Figure  1.  (a) The Hooke’s elastic law (τ=) described in τ-γ coordinates; (b) The Newton’s viscous law (τ=η$\dot \gamma $) described in τ-$\dot \gamma $coordinates; (c) The Newton’s viscous law (τ=η$\dot \gamma $) described in τ-γ coordinates

    图  2  理想晶体的剪切滑移

    Figure  2.  Shear slip in a perfect crystal

    图  3  由位错运动形成的滑移。

    Figure  3.  Slip formations due to dislocation movement.

    图  4  一列平行位错的运动造成的宏观塑性切应变

    Figure  4.  The macroscopic plastic shear strain ${\gamma ^{\rm{p}}}\left( {{\rm{ = }}\tan \theta } \right)$ caused by the motion of a row of parallel dislocations

    图  5  位错势垒示意图

    Figure  5.  Schematics of dislocation barrier

    图  6  应力空间中的Mises屈服圆柱和刘氏断裂钟面[14]

    Figure  6.  Mises yielding cylinder and Liu’s bell-like fracture surface in principal stress space[14]

    (1) Yield cylinder (Hencky-Mises); (2) (3) Liu’s bell-like rupture surface; (7) Brittle fracture cone; (8) Plane of pure shear; (9) Liu’s non-fracturing cone

  • [1] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
    [2] WANG L L, YANG L M, DONG X L, et al. Dynamics of materials: experiments, models and applications [M]. London: Elsevier Science and Technology Press, 2019.
    [3] 李敏华, 王仁. 塑性应力应变关系理论的文献总结 [J]. 力学学报, 1958, 2(2): 167–180.
    [4] 王仁, 黄文彬, 黄筑平. 塑性力学引论: 修订本[M]. 北京: 北京大学出版社, 1992.
    [5] OROWAN E. Plasticity of crystals [J]. Zeitschrift für Physik A, 1934, 89(9-10): 605–659. DOI: 10.1007/BF01341478.
    [6] POLANYI M. Lattice distortion which originates plastic flow [J]. Zeitschrift für Physik A, 1934, 89(9-10): 660–662. DOI: 10.1007/BF01341481.
    [7] TAYLOR G I. The mechanism of plastic deformation of crystals: Part I : theoretical [J]. Proceedings of the Royal Society of London, 1934, A145: 362–387. DOI: 10.1098/rspa.1934.0106.
    [8] OROWAN E. Problems of plastic gliding [J]. Proceedings of the Royal Society of London, 1940, 52(1): 8–22. DOI: 10.1088/0959-5309/52/1/303.
    [9] DAVIDSON D L, LINDHOLM U S. The effect of barrier shape in the rate theory of metal plasticity based on crystal dislocations [C] // Proceedings of the Conference on Mechanical Properties at High Rates of Strain. Oxford: The Institute of Physics, 1974: 124−137.
    [10] KOCKS U F, ARGON A S, ASHBY M F. Thermodynamics and kinetics of slip [J]. Progress in Materials Science, 1975, 19: 1–5. DOI: 10.1016/0079-6425(75)90005-5.
    [11] WANG L L. A thermo-viscoplastic constitutive equation based on hyperbolic shape thermo-activated barriers [J]. ASME Journal of Engineering Materials and Technology, 1984, 106(4): 331–336. DOI: 10.1115/1.3225726.
    [12] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journals of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
    [13] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica, 1988, 36(1): 81–93. DOI: 10.1016/0001-6160(88)90030-2.
    [14] 刘叔仪. 关于固体的现实应力空间 [J]. 物理学报, 1954, 10(1): 13–34. DOI: 10.7498/aps.10.13.
  • 加载中
图(6)
计量
  • 文章访问数:  6116
  • HTML全文浏览量:  2294
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-02-20
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回