鹿角骨单位仿生薄壁管斜向冲击耐撞性研究

霍鹏 许述财 范晓文 李建平 杨欣 黄晗

霍鹏, 许述财, 范晓文, 李建平, 杨欣, 黄晗. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究[J]. 爆炸与冲击, 2020, 40(11): 113102. doi: 10.11883/bzycj-2020-0035
引用本文: 霍鹏, 许述财, 范晓文, 李建平, 杨欣, 黄晗. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究[J]. 爆炸与冲击, 2020, 40(11): 113102. doi: 10.11883/bzycj-2020-0035
HUO Peng, XU Shucai, FAN Xiaowen, LI Jianping, YANG Xin, HUANG Han. Oblique impact resistance of a bionic thin-walled tube based on antles osteon[J]. Explosion And Shock Waves, 2020, 40(11): 113102. doi: 10.11883/bzycj-2020-0035
Citation: HUO Peng, XU Shucai, FAN Xiaowen, LI Jianping, YANG Xin, HUANG Han. Oblique impact resistance of a bionic thin-walled tube based on antles osteon[J]. Explosion And Shock Waves, 2020, 40(11): 113102. doi: 10.11883/bzycj-2020-0035

鹿角骨单位仿生薄壁管斜向冲击耐撞性研究

doi: 10.11883/bzycj-2020-0035
基金项目: 国家自然科学基金(51305223);河北农业大学青年科学基金(2013QNR001);中国博士后科学基金(2018M641338);现代农业产业技术体系建设专项(CARS-27)
详细信息
    作者简介:

    霍 鹏(1995- ),男,硕士研究生,hp0319@mail.tsinghua.edu.cn

    通讯作者:

    李建平(1978- ),男,硕士,副教授,ljpnd327@126.com

  • 中图分类号: O389;U463.99

Oblique impact resistance of a bionic thin-walled tube based on antles osteon

  • 摘要: 为提高薄壁管结构的耐撞性和吸能性,基于鹿角骨单位结构特征,结合结构仿生学原理设计出内径相同、外径等梯度逐层递减的仿生薄壁管。采用有限元法对75种仿生薄壁管结构进行10°、20°、30°等3种斜向冲击角度的吸能特性模拟;通过多项式回归元模型和多目标粒子群优化算法进行优化,以Pareto前沿最优原则得到各目标最优化的配置方案;采用最小距离选择法进行优化分析,得到各配置方案的最优结构设计参数。结果表明:仅考虑单一冲击角度时,在10°、20°、30°冲击角度下的仿生薄壁管耐撞性最优的仿生层数n均为6,最大壁厚与厚度梯度值参数组合tmax-a分别为2.84 mm-0.38 mm、2.89 mm-0.29 mm、2.91 mm-0.34 mm;综合考虑多种冲击角度权重因数不同配置方案时,仿生薄壁管耐撞性最优的仿生层数n均为6,最大壁厚与厚度梯度值参数组合tmax-a分别为2.95 mm-0.28 mm、2.92 mm-0.30 mm、2.85 mm-0.33 mm。
  • 图  1  鹿角分层结构示意图

    Figure  1.  Hierarchical structures of antlers

    图  2  仿生薄壁管设计

    Figure  2.  Design of bionic tube

    图  3  仿生薄壁管在10 m/s轴向冲击下的变形模式

    Figure  3.  Deformation patterns of a bionic tube under the axial impact of 10 m/s

    图  4  在186 kg的落锤下落高度为10 m的轴向冲击载荷下仿生薄壁管的力-位移曲线和吸能量-位移曲线

    Figure  4.  Force-displacement and energy absorption-displacement curves of the bionic tube under the axial impact of a drop hammer of 186 kg droping from the heigh of 10 m

    图  5  10°冲击下的性能指标

    Figure  5.  Performance indexes under 10° impact

    图  6  20°冲击下的性能指标

    Figure  6.  Performance indexes under 20° impact

    图  7  30°冲击下的性能指标

    Figure  7.  Performance indexes under 30° impact

    图  8  20°冲击下的5层结构性能指标响应面

    Figure  8.  Response surfaces of performance indexes of five-storeyed structures under 20° impact

    图  9  优化方法流程图

    Figure  9.  Flowchart of the optimization method

    图  10  不同配置方案的Pareto前沿

    Figure  10.  Pareto frontiers for different design case

    表  1  试验组别

    Table  1.   Group of test factors

    因素组别
    123456789101112
    tmax/mm2.802.802.802.802.802.852.852.852.852.852.92.90
    a/mm0.200.250.300.350.400.200.250.300.350.400.200.25
    因素组别
    13141516171819202122232425
    tmax/mm2.902.902.902.952.952.952.952.953.003.003.003.003.00
    a/mm0.300.350.400.200.250.300.350.400.200.250.300.350.40
    下载: 导出CSV

    表  2  设计样本的拟合系数R2

    Table  2.   Fitting coefficient R2 of design samples

    性能指标层数
    456
    10°20°30°10°20°30°10°20°30°
    e0.993 80.995 30.989 90.989 10.995 20.993 50.993 30.991 20.983 3
    f0.993 20.994 70.996 00.992 00.993 40.991 40.991 20.993 10.995 2
    下载: 导出CSV

    表  3  不同设计方案的权重因数

    Table  3.   Weighting factors for different design cases

    配置方案w1w2w3
    100
    010
    001
    1/61/31/2
    1/31/31/3
    1/21/31/6
    下载: 导出CSV

    表  4  不同设计方案的最优结构设计参数

    Table  4.   Optimum structural design parameters in different design cases

    配置方案最优指标结构设计参数性能指标fiei组内排名
    ejwfjwtmax/mma/mmα/(°)ne/(kJ·kg−1)f/kN
    −0.8390.8042.840.3810436.5575.08 0.1513
    539.3176.64 0.0472
    638.5078.65−0.0641
    −0.8190.8292.890.2920432.0665.77 0.1312
    530.7260.39 0.2443
    631.9268.00−0.2161
    −0.8030.8462.910.3430422.0759.25 0.2662
    522.4158.58 0.4343
    621.8259.53−0.4471
    −0.8240.8162.950.2810440.7271.04 0.0103
    542.4974.11−0.0252
    642.4475.26 0.0244
    20432.4066.88 0.1385
    530.8060.95 0.2426
    632.0768.79−0.2131
    30422.5055.96 0.2167
    522.0457.16 0.4439
    622.9057.19 0.4238
    −0.8170.8262.920.3010446.0165.32−0.1762
    538.8764.35 0.0575
    638.4267.75−0.0604
    20431.4761.47 0.0906
    531.0063.17 0.2378
    636.1258.42−0.1203
    30423.1052.70 0.1617
    520.9848.75 0.4669
    624.7153.39−0.3811
    −0.8300.8482.850.3310437.8071.82 0.0835
    539.0575.32 0.0534
    639.8176.63−0.0363
    20431.6072.34 0.2247
    532.8162.38 0.1966
    630.2361.30−0.2552
    30420.0468.63 0.4299
    522.7960.95 0.4258
    621.1862.58−0.4621
    下载: 导出CSV
  • [1] BAROUTAJI A, SAJJIA M, OLABI A G. On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments [J]. Thin-Walled Structures, 2017, 118: 137–163. DOI: 10.1016/j.tws.2017.05.018.
    [2] 徐峰祥, 张锁, 武昆迎. 厚度幂指数分布管状结构耐撞性设计准则与方法研究 [J]. 爆炸与冲击, 2019, 39(3): 035103. DOI: 10.11883/bzycj-2018-0013.

    XU F X, ZHANG S, WU K Y. Study on crashworthiness design criteria and method of tubular structures with power exponent distribution of thickness [J]. Explosion and Shock Waves, 2019, 39(3): 035103. DOI: 10.11883/bzycj-2018-0013.
    [3] 郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.
    [4] 谭丽辉, 徐涛, 崔晓梅, 等. 带有圆弧形凹槽金属薄壁圆管抗撞性优化设计 [J]. 爆炸与冲击, 2014, 34(5): 547–553. DOI: 10.11883/1001-1455(2014)05-0547-07.

    TAN L H, XU T, CUI X M, et al. Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations [J]. Explosion and Shock Waves, 2014, 34(5): 547–553. DOI: 10.11883/1001-1455(2014)05-0547-07.
    [5] 张涛, 刘土光, 肖汉林, 等. 高速冲击下薄壁组合结构吸能特性研究 [J]. 爆炸与冲击, 2006, 26(5): 395–403.

    ZHANG T, LIU T G, XIAO H L, et al. Energy absorption performance of thin-walled structures with triggering holes subjected to high-speed axial impact [J]. Explosion and Shock Waves, 2006, 26(5): 395–403.
    [6] 殷之平, 李玉龙, 黄其青. 含诱导缺陷薄壁圆管耐撞性优化设计 [J]. 爆炸与冲击, 2011, 31(4): 418–422. DOI: 10.11883/1001-1455(2011)04-0418-05.

    YIN Z P, LI Y L, HUANG Q Q. Optimal crashworthiness design of thin-walled circular tubes with triggering holes [J]. Explosion and Shock Waves, 2011, 31(4): 418–422. DOI: 10.11883/1001-1455(2011)04-0418-05.
    [7] 李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.

    LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
    [8] SUN G Y, LIU T Y, FANG J G, et al. Configurational optimization of multi-cell topologies for multiple oblique loads [J]. Structural and Multidisciplinary Optimization, 2018, 57(2): 469–488. DOI: 10.1007/s00158-017-1839-5.
    [9] ALKHATIB S E, TARLOCHAN F, HASHEM A, et al. Collapse behavior of thin-walled corrugated tapered tubes under oblique impact [J]. Thin-Walled Structures, 2018, 122: 510–528. DOI: 10.1016/j.tws.2017.10.044.
    [10] ASANJARANI A, DIBAJIAN S H, MAHDIAN A. Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations [J]. Thin-Walled Structures, 2017, 116: 26–36. DOI: 10.1016/j.tws.2017.03.015.
    [11] 亓昌, 董方亮, 杨姝, 等. 锥形多胞薄壁管斜向冲击吸能特性仿真研究 [J]. 振动与冲击, 2012, 31(24): 102–107. DOI: 10.13465/j.cnki.jvs.2012.24.009.

    QI C, DONG F L, YANG S, et al. Energy-absorbing characteristics of a tapered multi-cell thin-walled tube under oblique impact [J]. Journal of Vibration and Shock, 2012, 31(24): 102–107. DOI: 10.13465/j.cnki.jvs.2012.24.009.
    [12] 任露泉, 梁云虹. 仿生学导论[M]. 北京: 科学出版社, 2016: 208-210.
    [13] HUANG H, XU S C. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads [J]. Thin-Walled Structures, 2019, 144: 106333. DOI: 10.1016/j.tws.2019.106333.
    [14] 许述财, 邹猛, 魏灿刚, 等. 仿竹结构薄壁管的轴向耐撞性分析及优化 [J]. 清华大学学报(自然科学版), 2014, 54(3): 299–304. DOI: 10.16511/J.CNKI.QHDXXB.2014.03.007.

    XU S C, ZOU M, WEI C G, et al. Axial crashworthiness analysis and optimization of a bionic thin-walled tube based on bamboo structure [J]. Journal of Tsinghua University (Science and Technology), 2014, 54(3): 299–304. DOI: 10.16511/J.CNKI.QHDXXB.2014.03.007.
    [15] ZOU M, XU S C, WEI C G, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo [J]. Thin-Walled Structures, 2016, 101: 222–230. DOI: 10.1016/j.tws.2015.12.023.
    [16] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures [J]. Thin-Walled Structures, 2018, 125: 76–88. DOI: 10.1016/j.tws.2018.01.010.
    [17] LI Z, DUAN L B, CHEN T, et al. Crashworthiness analysis and multi-objective design optimization of a novel lotus root filled tube (LFT) [J]. Structural and Multidisciplinary Optimization, 2018, 57(2): 865–875. DOI: 10.1007/s00158-017-1782-5.
    [18] YIN H F, XIAO Y Y, WEN G L, et al. Multi-objective robust optimization of foam-filled bionic thin-walled structures [J]. Thin-Walled Structures, 2016, 109: 332–343. DOI: 10.1016/j.tws.2016.10.011.
    [19] CURREY J D. Bones: structure and mechanics [M]. New Jersey: Princeton University Press, 2006.
    [20] PICAVET P P, BALLIGAND M. Organic and mechanical properties of Cervidae antlers: a review [J]. Veterinary Research Communications, 2016, 40(3-4): 141–147. DOI: 10.1007/s11259-016-9663-8.
    [21] FANG Z Q, CHEN B, LIN S Y, et al. Investigation of inner mechanism of anisotropic mechanical property of antler bone [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88: 1–10. DOI: 10.1016/j.jmbbm.2018.07.043.
    [22] CURREY J D, LANDETE-CASTILLEJOS T, ESTEVEZ J, et al. The mechanical properties of red deer antler bone when used in fighting [J]. Journal of Experimental Biology, 2009, 212(24): 3985–3993. DOI: 10.1242/jeb.032292.
    [23] DAVISON K S, SIMINOSKI K, ADACHI J D, et al. Bone strength: the whole is greater than the sum of its parts [J]. Seminars in Arthritis and Rheumatism, 2006, 36(1): 22–31. DOI: 10.1016/j.semarthrit.2006.04.002.
    [24] HENSHAW J. Antlers: the unbrittle bones of contention [J]. Nature, 1971, 231(5303): 469. DOI: 10.1038/231469a0.
    [25] CHEN P Y, STOKES A G, MCKITTRICK J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (cervus elaphus canadensis) [J]. Acta Biomaterialia, 2009, 5(2): 693–706. DOI: 10.1016/j.actbio.2008.09.011.
    [26] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 043301. DOI: 10.11883/bzycj-2019-0280.

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure [J]. Explosion and Shock Waves, 2020, 40(4): 043301. DOI: 10.11883/bzycj-2019-0280.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1715
  • HTML全文浏览量:  1024
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 修回日期:  2020-08-14
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回