Deformation and payload of thin circular plates subjected to internal explosion
-
摘要: 为了研究内爆炸薄圆板的失效与作用载荷特性,在双圆筒装置内开展了铝质、钢质薄圆板内爆炸实验,分析了圆板破坏模式及比冲量载荷特性,并基于相同变形下载荷相等原理,得到了钢质圆板极限变形下的有效比冲量及作用时间,提出了该工况下圆板变形的预估模型。结果表明:在内爆炸载荷作用下,薄圆板的夹持边界和几何中心是应力集中区,产生了塑性大变形、拉伸撕裂、剪切断裂3种破坏模式;圆板的比冲量载荷由初始的波浪式增长逐渐转化为线性增长,30~80 g某温压装药使1 mm厚钢质圆板产生极限变形的有效比冲量作用时间在2.26~2.93 ms之间,经验证,圆钢板变形预估模型得到的装药质量与实验装药质量偏差小于13.3%。Abstract: In order to study the relationship between the failure and action loading characteristics of thin circular plates subjected to internal explosion, the experiments on aluminum and steel thin circular plates were carried out in a double-cylinder device. The failure modes and the specific impulse characteristics of the circular plates were analyzed. Based on the principle of equal loading under the same deformation, the effective specific impulse and action time under the ultimate deformation of the circular plate were obtained, and the prediction model of the circular plate deformation under this condition was proposed. The results show that, under the action of internal explosion load, the stress concentration zone is the boundary and geometric center of the thin circular plate, which leads to the failure mode of large plastic deformation, tensile tear and shear fracture. The specific impulse on the circular plate gradually changes from the initial wave growth to linear growth, and the effective specific impulse action time is in the range of 2.26–2.93 ms for a certain thermobaric explosive charge of 30–80 g making the steel circular plate with the thickness of 1 mm produce the ultimate deformation. The empirical results show that the deviation between the charge mass obtained by the prediction model and the experimental charge mass is less than 13.3%.
-
Key words:
- internal explosion /
- thin circular plate /
- deformation mode /
- effective specific impulse /
- action time
-
表 1 各实验工况圆板的变形结果
Table 1. Deformation results of circular plate under various experimental conditions
实验工况 平板材质 平板厚度/mm 装药类型 装药质量/g 圆板挠度/mm 变形破坏结果 1 铝 2 TNT 20 71.5 夹持边、中心塑性大变形 2 铝 2 TNT 40 夹持边被切断 3 铝 2 WY 20 93.0 夹持边间断性裂缝 4 钢 1 TNT 40 85.5 夹持边、中心塑性大变形 5 钢 1 WY 30 86.0 夹持边、中心塑性大变形 6 钢 1 WY 40 100.5 夹持边、中心塑性大变形 7 钢 1 WY 50 111.0 夹持边、中心塑性大变形 8 钢 1 WY 60 122.0 夹持边、中心塑性大变形 9 钢 1 WY 70 134.0 夹持边、中心塑性大变形 10 钢 1 WY 80 147.0 夹持边、中心塑性大变形 表 2 工况5~10的 p和Δi及典型时刻模型比冲量的计算值和实验值
Table 2. p and Δi
of conditions 5−10 and the calculated and experimental specific impulses at typical times 实验
工况压力/
MPa比冲量快速增长量/
(MPa·ms)3 ms 时的比冲量/(MPa·ms) 5 ms 时的比冲量/(MPa·ms) 10 ms 时的比冲量/(MPa·ms) 计算值 实验值 计算值 实验值 计算值 实验值 5 0.199 0.290 0.861 0.758 1.236 1.264 2.172 2.217 6 0.235 0.332 1.056 0.970 1.512 1.409 2.653 2.568 7 0.294 0.393 1.237 1.200 1.769 1.701 3.097 3.244 8 0.322 0.471 1.408 1.289 2.010 1.856 3.515 3.520 9 0.342 0.518 1.571 1.424 2.240 2.123 3.912 3.927 10 0.377 0.566 1.727 1.648 2.460 2.446 4.291 4.342 表 3 工况5~10钢质圆板的有效冲量和有效比冲量
Table 3. Effective impulses and effective specific impulses of steel circular plates under conditions 5−10
实验工况 圆板挠度$/{\rm{m} }{\rm{m} }$ 有效冲量$/({\rm{N} }\cdot {\rm{s} } )$ 有效比冲量$/({\rm{MP} }{\rm{a} }\cdot {\rm{ms} } )$ 修正有效冲量$/({\rm{N} }\cdot {\rm{s} })$ 修正有效比冲量$/({\rm{MP} }{\rm{a} }\cdot {\rm{ms} })$ 作用时间$/{\rm{m} }{\rm{s} }$ 5 86.0 344 0.656 389 0.777 2.93 6 100.5 402 0.767 456 0.912 2.76 7 111.0 444 0.847 505 1.009 2.55 8 122.0 476 0.908 542 1.084 2.43 9 134.0 536 1.023 612 1.224 2.36 10 147.0 588 1.122 673 1.345 2.26 -
[1] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review: Part II: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8. [2] WEN H M. Deformation and tearing of clamped circular work-hardening plates under impulsive loading [J]. International Journal of Pressure Vessels and Piping, 1998, 75(1): 67–73. DOI: 10.1016/S0308-0161(98)00023-4. [3] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007, 29(10): 2723–2736. DOI: 10.1016/j.engstruct2007.01.021. [4] GUPTA N K, NAGESH. Deformation and tearing of circular plates with varying support conditions under uniform impulsive loads [J]. International Journal of Impact Engineering, 2007, 34(1): 42–59. DOI: 10.1016/j.ijimpeng.2006.05.002. [5] GERETTO C, CHUNG K Y S, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015, 79: 32–44. DOI: 10.1016/j.ijimpeng.2014.08.002. [6] TEELING-SMITH R G, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads [J]. International Journal of Impact Engineering, 1991, 11(1): 77–91. DOI: 10.1016/0734-743X(91)90032-B. [7] 朱锡, 冯刚, 张振华. 爆炸载荷作用下固支方板的应变场及破坏分析 [J]. 船舶力学, 2005, 9(2): 83–89. DOI: 10.3969/j.issn.1007-7294.2005.02.013.ZHU X, FENG G, ZHANG Z H. Strain field and damage analysis of clamped square plate subjected to explosive loading [J]. Journal of Ship Mechanics, 2005, 9(2): 83–89. DOI: 10.3969/j.issn.1007-7294.2005.02.013. [8] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08. [9] 崔高领, 蒋志刚, 胡平. 冲击荷载作用下金属方板的变形与起裂分析 [J]. 振动与冲击, 2008, 27(10): 170–174. DOI: 10.3969/j.issn.1000-3835.2008.10.040.CUI G L, JIANG Z G, HU P. Analysis of deformation and rupture of metal square plates subjected to impulsive loads [J]. Journal of Vibration and Shock, 2008, 27(10): 170–174. DOI: 10.3969/j.issn.1000-3835.2008.10.040. [10] 姚熊亮, 屈子悦, 姜子飞, 等. 舰船舱内爆炸载荷特征与板架毁伤规律分析 [J]. 中国舰船研究, 2018, 13(3): 140–148. DOI: 10.19693/j.issn.1673-3185.01162.YAO X L, QU Z Y, JIANG Z F, et al. Analysis on characteristics of blast loading and stiffened plate damage due to internal blast in ship [J]. Chinese Journal of Ship Research, 2018, 13(3): 140–148. DOI: 10.19693/j.issn.1673-3185.01162. [11] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08. [12] ZHAO Y P, YU T X, FANG J. Large dynamic plastic deflection of a simply supported beam subjected to rectangular pressure pulse [J]. Archive of Applied Mechanics, 1994, 64(3): 223–232. [13] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究 [J]. 兵工学报, 2018, 39(8): 1582–1589. DOI: 10.3969/j.issn.1000-1093.2018.08.015.ZHENG C, KONG X S, ZHOU H, et al. On the deformation of thin plates subjected to confined blast loading [J]. Acta Armamentarii, 2018, 39(8): 1582–1589. DOI: 10.3969/j.issn.1000-1093.2018.08.015. [14] 孔祥韶, 周沪, 郑成, 等. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究 [J]. 爆炸与冲击, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.KONG X S, ZHOU H, ZHENG C, et al. An equivalent calculation method for confined-blast load based on saturated response time [J]. Explosion and Shock Waves, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183. [15] 陈志林. 空气冲击波遇运动刚壁反射时壁面超压的计算 [J]. 爆炸与冲击, 1985, 5(4): 31–39.CHEN Z L. Overpressure calculation on the reflection of air shock waves with moving rigid wall [J]. Explosion and Shock Waves, 1985, 5(4): 31–39. [16] 朱锡, 张振华, 梅志远. 舰船结构毁伤力学 [M]. 北京: 国防工业出版社, 2013: 66–73. [17] 张阿漫, 郭君, 孙龙泉, 等. 舰船结构毁伤与生命力基础 [M]. 北京: 国防工业出版社, 2012: 110–127. [18] BAKER W E, OLDHAM G A. Estimates of blow down of quasi-static pressures in vented chambers: DAAA15-75-C-0083 [R]. San Antonio, Texas, Southwest Research Institute, 1975. [19] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007(29): 2723–2736. DOI: 10.1016/j.engstruct.2007.01.021.