Ti-6Al-4V弹体破坏模式对冲击反应的影响研究

何丽灵 张方举 颜怡霞 谢若泽 徐艾民 周燕良

何丽灵, 张方举, 颜怡霞, 谢若泽, 徐艾民, 周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究[J]. 爆炸与冲击, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046
引用本文: 何丽灵, 张方举, 颜怡霞, 谢若泽, 徐艾民, 周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究[J]. 爆炸与冲击, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046
HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046
Citation: HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046

Ti-6Al-4V弹体破坏模式对冲击反应的影响研究

doi: 10.11883/bzycj-2020-0046
详细信息
    作者简介:

    何丽灵(1984- ),女,博士,副研究员,heliling1984@139.com

    通讯作者:

    谢若泽(1970- ),男,硕士,研究员,xierz@caep.cn

  • 中图分类号: O385

Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes

  • 摘要: Ti-6Al-4V材料是武器结构轻量化时的重要替代材料,其冲击反应将可能增加战斗部毁伤威力,但目前缺乏对其冲击反应条件及反应机理的研究。本文将采用试验与理论分析方法,研究结构破坏模式对Ti-6Al-4V材料冲击反应的影响,获得其冲击反应条件及反应机理。设计并开展了钛合金弹(头部与壳体均为钛合金)与复合弹(头部碳/碳复合材料、壳体空心钛合金圆柱)正侵彻混凝土试验,撞击速度在222~1008 m/s之间。钛合金弹激发了剧烈的氧化冲击反应,但复合弹未产生冲击反应。破坏模式宏细观分析显示,钛合金弹侵彻后宏观结构基本完整,仅表面发生摩擦磨损,以细观组织剪切变形为主要失效模式,形成尺寸在微米量级至百微米量级的颗粒碎片,碎片个数可高达3×106。复合弹的钛合金空心圆柱被撕裂成块,撕裂面沿剪切带方向发展,碎块尺寸在毫米或以上量级,个数至多百余个。碎片供氧和供热的效率均与碎片尺寸成反比,而特定供氧与供热条件下,碎片尺寸足够小是Ti-6Al-4V材料发生冲击反应的必要条件,这是钛合金弹发生冲击反应而钛合金空心圆柱无法激发冲击反应的本质原因。在具备冲击反应必要条件的前提下,碎片个数越多,冲击反应烈度越高。
  • 图  1  两种试验弹结构示意图(单位:mm)

    Figure  1.  Schemes for two projectiles tested (unit: mm)

    图  2  试验系统

    Figure  2.  Layout of experimental set-up

    图  3  侵彻前后钛合金弹形状对比

    Figure  3.  Shape variation of titanium projectile before and after penetration test

    图  4  侵彻前后复合弹形状对比

    Figure  4.  Shape variation of composite projectile before and after penetration test

    图  5  钛合金弹与钛合金空心圆柱的质量损失

    Figure  5.  Mass loss for hollow titanium cylinders and titanium projectiles

    图  6  回收的部分钛合金空心圆柱碎片

    Figure  6.  Recovered fragments of the hollow titanium cylinder

    图  7  钛合金原始金相组织

    Figure  7.  The undeformed microstructure of Ti-6Al-4V

    图  8  钛合金弹侵彻后头部与壳体表面金相形貌(OMZ表示未变形区)

    Figure  8.  Metallograph of outer-surface in titanium projectile after penetration (OMZ represents origainal material zone)

    图  9  钛合金弹侵彻后头部和壳体表面剪切带金相形貌

    Figure  9.  Metallograph of shear band (SB) on titanium projectile after penetration

    图  10  侵彻后钛合金空心圆柱金相形貌

    Figure  10.  Metallograph of hollow titanium cylinder after penetration

    图  11  钛合金弹与钛合金空心圆柱的碎片个数

    Figure  11.  Number of fragments for titanium projectiles and hollow titanium cylinders

    表  1  弹靶几何尺寸

    Table  1.   Dimensions for projectiles and target

    类别直径/mm长度/mm质量/g
    钛合金弹 25.3180.8220
    复合弹 25.3206.0183
    混凝土靶500.0400.0
    下载: 导出CSV

    表  2  钛合金弹侵彻试验结果

    Table  2.   Experimental results for titanium projectiles

    弹号原始弹直径/
    mm
    原始弹长度/
    mm
    原始弹质量/
    g
    实测弹速/
    (m·s−1)
    试后弹质量/
    g
    试后弹长/
    mm
    弹坑尺寸/mm
    abc
    A0125.26180.80220.4364219.0180.7200162 83
    A0225.23180.98219.8423217.4181.1320290 95
    A0525.24180.84220.3591216.6178.8390310130
    A0425.26180.97221.4601217.0179.3420300120
    A0725.22180.82219.5772碎散碎散碎散
    A0825.24180.80220.7811212.3177.0碎散碎散碎散
    A1225.24180.90220.5941209.4174.2碎散碎散碎散
    A1125.24180.78220.6945207.6171.7碎散碎散碎散
     注:(1)a表示靶面弹坑最长长度,b表示弹坑最短长度,c表示弹坑深度;(2)A07弹未找到。
    下载: 导出CSV

    表  3  复合弹侵彻试验结果

    Table  3.   Experimental results for composite projectile

    弹号原始弹直径/
    mm
    原始弹长度/
    mm
    原始弹质量/
    g
    钛合金空心
    圆柱质量/g
    实测弹速/
    (m·s−1)
    试后弹质量/
    g
    试后弹长/
    mm
    弹坑尺寸/mm
    abc
    B0325.25206.12183.50132.20222143.0149.9无弹坑无弹坑无弹坑
    B0225.26205.74183.20131.90282132.0148.1 65 45 4
    B0125.22205.86181.70130.00341113.7134.1 80 60 3
    B0525.27206.12184.00132.80424115.6133.216013522
    B0625.24206.32183.40132.20516105.1129.012010533
    B0425.23205.76182.00130.6057485.5106.918015535
    B0825.24206.00182.80131.8068168.777.223020045
    B1125.21205.96181.80131.1071972.380.225025045
    B0925.24206.10183.50132.3081359.382.024023063
    B0725.23205.84181.60130.7085749.063.730026070
    B1025.25205.86182.90131.50100840.452.329024090
    下载: 导出CSV

    表  4  同时刻不同着靶速度时钛合金弹撞击混凝土靶的高速摄影图像对比

    Table  4.   High-speed photographies for titanium projectiles penetrating into concrete target at different impact velocities

    时间/μsA01A02A05A04A07A08A12A11
    364 m/s423 m/s591 m/s601 m/s772 m/s811 m/s941 m/s945 m/s
    0
    40
    100
    200
    400
    800
    1200
    下载: 导出CSV

    表  5  同时刻不同着靶速度时复合弹撞击混凝土靶的高速摄影图像对比

    Table  5.   High-speed photographies for composite projectiles penetrating into concrete target at different impact velocities

    时间/μsB03B02B01B05B06B04B08B07B10
    222 m/s282 m/s341 m/s424 m/s516 m/s574 m/s681 m/s857 m/s1 008 m/s
    0
    40
    100
    200
    400
    800
    下载: 导出CSV
  • [1] MARTINEZ F, ESQUIVEL E V, LOPEZ M I, et al. Adiabatic shear bands associated with plug formation and penetration in Ti-6Al-4V targets: formation, structure, and performance: a preliminary study [C] // HOWARD S M, STEPHENS R L, NEWMAN C J, et al. EPD 2006 Congress, USA: The Minerals, Metals & Materials Society, 2006: 137−142.
    [2] 胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理分析 [J]. 爆炸与冲击, 1995, 15(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6Al-4V natural fragments [J]. Explosion and Shock Waves, 1995, 15(3): 254–258.
    [3] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [4] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
    [5] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.

    ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
    [6] REN H L, LIU X J, NING J G. Impact-initiated behavior and reaction mechanism of W/Zr composites with SHPB setup [J]. AIP Advances, 2016, 6(11): 115205. DOI: 10.1063/1.4967340.
    [7] HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 481: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011.
    [8] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [9] WANG Y, JIANG W, ZHANG X F, et al. Energy release characteristics of impact-initiated energetic aluminum-magnesium mechanical alloy particles with nanometer-scale structure [J]. Thermochimica Acta, 2011, 512(1-2): 233–239. DOI: 10.1016/j.tca.2010.10.013.
    [10] 张云峰, 罗兴柏, 刘国庆, 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性 [J]. 爆炸与冲击, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.

    ZHANG Y F, LUO X B, LIU G Q, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite fragment against RHA target [J]. Explosion and Shock Waves, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.
    [11] WANG H F, ZHENG Y F, YU Q B, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974.
    [12] 刘俊晓, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究 [J]. 材料工程, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.

    LIU J X, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions [J]. Journal of Materials Engineering, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.
    [13] 张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.

    ZHANG X F, ZHAO X N, QIAO L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosion and Shock Waves, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.
    [14] AYDELOTTE B B, THADHANI N N. Mechanistic aspects of impact initiated reactions in explosively consolidated metal+aluminum powder mixtures [J]. Materials Science and Engineering: A, 2013, 570: 164–171. DOI: 10.1016/j.msea.2013.01.054.
    [15] 张源, 张爱荔, 李惠娟. TC4钛合金的表面氧化及其对疲劳性能的影响 [J]. 钛工业进展, 2010, 27(1): 25–27. DOI: 10.3969/j.issn.1009-9964.2010.01.005.

    ZHANG Y, ZHANG A L, LI H J. Surface oxidation and its effect on the fatigue property of TC4 alloy [J]. Titanium Industry Progress, 2010, 27(1): 25–27. DOI: 10.3969/j.issn.1009-9964.2010.01.005.
    [16] 赵永庆, 周廉, 邓炬. 钛合金的燃烧产物及形貌 [J]. 兵器材料科学与工程, 1999, 22(6): 19–24.

    ZHAO Y Q, ZHOU L, DENG J. Burn resistant behavior and burn resistant mechanism of Ti40 alloy [J]. Ordnance Material Science and Engineering, 1999, 22(6): 19–24.
    [17] 王标, 田伟. TC4钛合金燃烧形貌和机理分析 [J]. 燃气涡轮试验与研究, 2013, 26(3): 50–52; 28. DOI: 10.3969/j.issn.1672-2620.2013.03.011.

    WANG B, TIAN W. Combustion morphology and mechanism analysis of titanium alloy TC4 [J]. Gas Turbine Experiment and Research, 2013, 26(3): 50–52; 28. DOI: 10.3969/j.issn.1672-2620.2013.03.011.
    [18] 隋树山, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 65−66.
    [19] 何丽灵, 陈小伟, 范瑛. 先进钻地弹高速侵彻实验中质量磨蚀金相分析 [J]. 爆炸与冲击, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.

    HE L L, CHEN X W, FAN Y. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.
    [20] HE L L, CHEN X W, WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration (CPHP) [J]. International Journal of Impact Engineering, 2016, 94: 1–12. DOI: 10.1016/j.ijimpeng.2016.03.010.
    [21] 胡八一, 董庆东, 韩长生, 等. TC4钛合金及40Cr钢破片中绝热剪切带的TEM分析 [J]. 高压物理学报, 1996, 10(1): 37–43. DOI: 10.11858/gywlxb.1996.01.006.

    HU B Y, DONG Q D, HAN C S, et al. TEM observation of shear bands in Ti-6Al-4V and AISI 6140 steel [J]. Chinese Journal of High Pressure Physics, 1996, 10(1): 37–43. DOI: 10.11858/gywlxb.1996.01.006.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1856
  • HTML全文浏览量:  948
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-08-25
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回