Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes
-
摘要: Ti-6Al-4V材料是武器结构轻量化时的重要替代材料,其冲击反应将可能增加战斗部毁伤威力,但目前缺乏对其冲击反应条件及反应机理的研究。本文将采用试验与理论分析方法,研究结构破坏模式对Ti-6Al-4V材料冲击反应的影响,获得其冲击反应条件及反应机理。设计并开展了钛合金弹(头部与壳体均为钛合金)与复合弹(头部碳/碳复合材料、壳体空心钛合金圆柱)正侵彻混凝土试验,撞击速度在222~1008 m/s之间。钛合金弹激发了剧烈的氧化冲击反应,但复合弹未产生冲击反应。破坏模式宏细观分析显示,钛合金弹侵彻后宏观结构基本完整,仅表面发生摩擦磨损,以细观组织剪切变形为主要失效模式,形成尺寸在微米量级至百微米量级的颗粒碎片,碎片个数可高达3×106。复合弹的钛合金空心圆柱被撕裂成块,撕裂面沿剪切带方向发展,碎块尺寸在毫米或以上量级,个数至多百余个。碎片供氧和供热的效率均与碎片尺寸成反比,而特定供氧与供热条件下,碎片尺寸足够小是Ti-6Al-4V材料发生冲击反应的必要条件,这是钛合金弹发生冲击反应而钛合金空心圆柱无法激发冲击反应的本质原因。在具备冲击反应必要条件的前提下,碎片个数越多,冲击反应烈度越高。Abstract: Ti-6Al-4V is a kind of important alternative material for light-weight design of warhead whose impact-initiated reaction could enhance the damage power of the weapon. However, there is not enough research on the condition and mechanism of its impact-initiated reaction. Through experimental and theoretical analyses, the influences of fracture modes of Ti-6Al-4V structure on impact initiated reaction were studied in the present paper, in order to obtain the condition and mechanism of impact-initiated reaction of Ti-6Al-4V material. Two types of projectiles were designed to normally penetrate the unreinforced concrete target, i.e., the titanium projectile with ogival nose and the composite projectile with C/C nose and hollow titanium cylinder. The impact velocity followed between 222 m/s and 1008 m/s. Two projectiles exhibit different fracture modes. In the studied velocity range, there is an impact-initiated reaction during penetration for the titanium projectile, but no reaction is observed during the impact of the composite projectile. The fracture modes of the two projectiles were analyzed in the macroscopic and microscopic views. After penetration, the structure of the titanium projectile is almost intact. Only abrasion is observed on the outer-surface of the projectile. The main failure mode for abrasion is the shear deformation of its microstructure, which induces fragments with lengths in micrometers or hundreds of micrometers. The number of fragments could be up to 3 millions. For the hollow titanium cylinder in the composite projectile, it is teared up into large fragments, whose dimensions are in millimeters. The tearing surface develops along the shear band. The largest number of fragments is almost 120. Further analyses indicate that the efficiency of oxygen and heat supply is reverse proportional to the size of the fragment. Under certain oxygen and heat supply, the necessary condition to initiate the impact reaction of Ti-6Al-4V is that the size of fragments should be small enough. This must be the essential reason for the impact reaction in an ogival titanium projectile and no reaction in a composite projectile during penetration. With the necessary condition to initiate the impact reaction, the greater the number of fragments, the higher the impact reaction intensity is.
-
表 1 弹靶几何尺寸
Table 1. Dimensions for projectiles and target
类别 直径/mm 长度/mm 质量/g 钛合金弹 25.3 180.8 220 复合弹 25.3 206.0 183 混凝土靶 500.0 400.0 − 表 2 钛合金弹侵彻试验结果
Table 2. Experimental results for titanium projectiles
弹号 原始弹直径/
mm原始弹长度/
mm原始弹质量/
g实测弹速/
(m·s−1)试后弹质量/
g试后弹长/
mm弹坑尺寸/mm a b c A01 25.26 180.80 220.4 364 219.0 180.7 200 162 83 A02 25.23 180.98 219.8 423 217.4 181.1 320 290 95 A05 25.24 180.84 220.3 591 216.6 178.8 390 310 130 A04 25.26 180.97 221.4 601 217.0 179.3 420 300 120 A07 25.22 180.82 219.5 772 − − 碎散 碎散 碎散 A08 25.24 180.80 220.7 811 212.3 177.0 碎散 碎散 碎散 A12 25.24 180.90 220.5 941 209.4 174.2 碎散 碎散 碎散 A11 25.24 180.78 220.6 945 207.6 171.7 碎散 碎散 碎散 注:(1)a表示靶面弹坑最长长度,b表示弹坑最短长度,c表示弹坑深度;(2)A07弹未找到。 表 3 复合弹侵彻试验结果
Table 3. Experimental results for composite projectile
弹号 原始弹直径/
mm原始弹长度/
mm原始弹质量/
g钛合金空心
圆柱质量/g实测弹速/
(m·s−1)试后弹质量/
g试后弹长/
mm弹坑尺寸/mm a b c B03 25.25 206.12 183.50 132.20 222 143.0 149.9 无弹坑 无弹坑 无弹坑 B02 25.26 205.74 183.20 131.90 282 132.0 148.1 65 45 4 B01 25.22 205.86 181.70 130.00 341 113.7 134.1 80 60 3 B05 25.27 206.12 184.00 132.80 424 115.6 133.2 160 135 22 B06 25.24 206.32 183.40 132.20 516 105.1 129.0 120 105 33 B04 25.23 205.76 182.00 130.60 574 85.5 106.9 180 155 35 B08 25.24 206.00 182.80 131.80 681 68.7 77.2 230 200 45 B11 25.21 205.96 181.80 131.10 719 72.3 80.2 250 250 45 B09 25.24 206.10 183.50 132.30 813 59.3 82.0 240 230 63 B07 25.23 205.84 181.60 130.70 857 49.0 63.7 300 260 70 B10 25.25 205.86 182.90 131.50 1008 40.4 52.3 290 240 90 表 4 同时刻不同着靶速度时钛合金弹撞击混凝土靶的高速摄影图像对比
Table 4. High-speed photographies for titanium projectiles penetrating into concrete target at different impact velocities
时间/μs A01 A02 A05 A04 A07 A08 A12 A11 364 m/s 423 m/s 591 m/s 601 m/s 772 m/s 811 m/s 941 m/s 945 m/s 0 40 100 200 400 800 1200 表 5 同时刻不同着靶速度时复合弹撞击混凝土靶的高速摄影图像对比
Table 5. High-speed photographies for composite projectiles penetrating into concrete target at different impact velocities
时间/μs B03 B02 B01 B05 B06 B04 B08 B07 B10 222 m/s 282 m/s 341 m/s 424 m/s 516 m/s 574 m/s 681 m/s 857 m/s 1 008 m/s 0 40 100 200 400 800 -
[1] MARTINEZ F, ESQUIVEL E V, LOPEZ M I, et al. Adiabatic shear bands associated with plug formation and penetration in Ti-6Al-4V targets: formation, structure, and performance: a preliminary study [C] // HOWARD S M, STEPHENS R L, NEWMAN C J, et al. EPD 2006 Congress, USA: The Minerals, Metals & Materials Society, 2006: 137−142. [2] 胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理分析 [J]. 爆炸与冲击, 1995, 15(3): 254–258.HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6Al-4V natural fragments [J]. Explosion and Shock Waves, 1995, 15(3): 254–258. [3] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021. [4] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004. [5] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114. [6] REN H L, LIU X J, NING J G. Impact-initiated behavior and reaction mechanism of W/Zr composites with SHPB setup [J]. AIP Advances, 2016, 6(11): 115205. DOI: 10.1063/1.4967340. [7] HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 481: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011. [8] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107. [9] WANG Y, JIANG W, ZHANG X F, et al. Energy release characteristics of impact-initiated energetic aluminum-magnesium mechanical alloy particles with nanometer-scale structure [J]. Thermochimica Acta, 2011, 512(1-2): 233–239. DOI: 10.1016/j.tca.2010.10.013. [10] 张云峰, 罗兴柏, 刘国庆, 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性 [J]. 爆炸与冲击, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.ZHANG Y F, LUO X B, LIU G Q, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite fragment against RHA target [J]. Explosion and Shock Waves, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065. [11] WANG H F, ZHENG Y F, YU Q B, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974. [12] 刘俊晓, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究 [J]. 材料工程, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.LIU J X, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions [J]. Journal of Materials Engineering, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212. [13] 张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.ZHANG X F, ZHAO X N, QIAO L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosion and Shock Waves, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07. [14] AYDELOTTE B B, THADHANI N N. Mechanistic aspects of impact initiated reactions in explosively consolidated metal+aluminum powder mixtures [J]. Materials Science and Engineering: A, 2013, 570: 164–171. DOI: 10.1016/j.msea.2013.01.054. [15] 张源, 张爱荔, 李惠娟. TC4钛合金的表面氧化及其对疲劳性能的影响 [J]. 钛工业进展, 2010, 27(1): 25–27. DOI: 10.3969/j.issn.1009-9964.2010.01.005.ZHANG Y, ZHANG A L, LI H J. Surface oxidation and its effect on the fatigue property of TC4 alloy [J]. Titanium Industry Progress, 2010, 27(1): 25–27. DOI: 10.3969/j.issn.1009-9964.2010.01.005. [16] 赵永庆, 周廉, 邓炬. 钛合金的燃烧产物及形貌 [J]. 兵器材料科学与工程, 1999, 22(6): 19–24.ZHAO Y Q, ZHOU L, DENG J. Burn resistant behavior and burn resistant mechanism of Ti40 alloy [J]. Ordnance Material Science and Engineering, 1999, 22(6): 19–24. [17] 王标, 田伟. TC4钛合金燃烧形貌和机理分析 [J]. 燃气涡轮试验与研究, 2013, 26(3): 50–52; 28. DOI: 10.3969/j.issn.1672-2620.2013.03.011.WANG B, TIAN W. Combustion morphology and mechanism analysis of titanium alloy TC4 [J]. Gas Turbine Experiment and Research, 2013, 26(3): 50–52; 28. DOI: 10.3969/j.issn.1672-2620.2013.03.011. [18] 隋树山, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 65−66. [19] 何丽灵, 陈小伟, 范瑛. 先进钻地弹高速侵彻实验中质量磨蚀金相分析 [J]. 爆炸与冲击, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.HE L L, CHEN X W, FAN Y. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08. [20] HE L L, CHEN X W, WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration (CPHP) [J]. International Journal of Impact Engineering, 2016, 94: 1–12. DOI: 10.1016/j.ijimpeng.2016.03.010. [21] 胡八一, 董庆东, 韩长生, 等. TC4钛合金及40Cr钢破片中绝热剪切带的TEM分析 [J]. 高压物理学报, 1996, 10(1): 37–43. DOI: 10.11858/gywlxb.1996.01.006.HU B Y, DONG Q D, HAN C S, et al. TEM observation of shear bands in Ti-6Al-4V and AISI 6140 steel [J]. Chinese Journal of High Pressure Physics, 1996, 10(1): 37–43. DOI: 10.11858/gywlxb.1996.01.006.