脆性膨胀环动态拉伸碎裂实验研究

汤佳妮 徐便 郑宇轩 周风华

汤佳妮, 徐便, 郑宇轩, 周风华. 脆性膨胀环动态拉伸碎裂实验研究[J]. 爆炸与冲击, 2021, 41(1): 014101. doi: 10.11883/bzycj-2020-0049
引用本文: 汤佳妮, 徐便, 郑宇轩, 周风华. 脆性膨胀环动态拉伸碎裂实验研究[J]. 爆炸与冲击, 2021, 41(1): 014101. doi: 10.11883/bzycj-2020-0049
TANG Jiani, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Experimental study for dynamic fragmentation of brittle expansion rings[J]. Explosion And Shock Waves, 2021, 41(1): 014101. doi: 10.11883/bzycj-2020-0049
Citation: TANG Jiani, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Experimental study for dynamic fragmentation of brittle expansion rings[J]. Explosion And Shock Waves, 2021, 41(1): 014101. doi: 10.11883/bzycj-2020-0049

脆性膨胀环动态拉伸碎裂实验研究

doi: 10.11883/bzycj-2020-0049
基金项目: 国家自然科学基金重点项目(11932018);国防科技重点实验室基金项目(6142A03191004)
详细信息
    作者简介:

    汤佳妮(1995- ),女,硕士研究生,tang1042227668@foxmail.com

    通讯作者:

    郑宇轩(1986- ),男,博士,副教授,zhengyuxuan@nbu.edu.cn

  • 中图分类号: O383; O346.1

Experimental study for dynamic fragmentation of brittle expansion rings

  • 摘要: 发展了一种液压冲击脆性膨胀环实验技术,通过可升降的凸台对脆性膨胀环进行精确的对心定位安置,避免偏心膨胀带来的弯曲断裂,通过膨胀环试件上的半导体应变片测量其在拉伸碎裂过程中的应变时程曲线;对典型脆性材料碳化硅(SiC)陶瓷进行了膨胀拉伸碎裂实验研究,获得了其动态拉伸断裂强度和碎片平均尺寸及分布。实验结果表明:(1) 液压冲击膨胀环实验能较好地实现脆性膨胀环的拉伸碎裂,在应变率101 s−1量级下,SiC陶瓷拉伸断裂应变为3.7×10−4~7.4×10−4,平均拉伸断裂应力为206 MPa;(2) SiC陶瓷无量纲化平均碎片尺寸落于多种脆性碎裂预测模型的合理区间内,随着加载应变率的提高,SiC陶瓷的平均碎片尺寸减小;(3) SiC陶瓷拉伸碎裂的碎片分布基本符合Rayleigh分布,但是在细小尺寸上和大尺寸碎片分布上存在一定偏差。
  • 图  1  液压膨胀环实验装置

    Figure  1.  Liquid-driving expansion ring setup

    图  2  无效的陶瓷圆环试件的周向应变时程曲线

    Figure  2.  Illogical circumferential strain profiles of SiC rings

    图  3  陶瓷圆环试件的周向应变时程曲线

    Figure  3.  Circumferential strain profiles of SiC rings

    图  4  回收的SiC试件碎片复原图

    Figure  4.  Fragments of SiC specimen after the expanding ring tests

    图  5  无量纲化碎片尺寸与应变率的关系-实验结果与现有研究[15-19, 21, 23, 25-26]比较

    Figure  5.  Comparison of experimental data and other research results[15-19, 21, 23, 25-26] of brittle fragment size

    图  6  碎片尺寸分布

    Figure  6.  Distributions of fragment size

    图  7  碎片的归一化积累分布与Rayleigh分布函数的比较

    Figure  7.  Comparison of cumulative distribution of normalized fragment size to the Rayleigh distribution function

  • [1] BANNIKOVA I, UVAROV S, DAVYDOVA M, et al. Study of ceramic tube fragmentation under shock wave loading [J]. Procedia Materials Science, 2014, 3: 592–597. DOI: 10.1016/j.mspro.2014.06.098.
    [2] NIE X, WRIGHT J C, CHEN W W, et al. Rate effects on the mechanical response of magnesium aluminate spinel [J]. Materials Science and Engineering: A, 2011, 528(15): 5088–5095. DOI: 10.1016/j.msea.2011.03.027.
    [3] FORQUIN P, DENOUAL C, COTTENOT C E, et al. Experiments and modelling of the compressive behaviour of two SiC ceramics [J]. Mechanics of Materials, 2003, 35(10): 987–1002. DOI: 10.1016/s0167-6636(02)00321-6.
    [4] ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of ceramic particles [J]. Mechanics of Materials, 1998, 29(3−4): 161–180. DOI: 10.1016/s0167-6636(98)00014-3.
    [5] International Society for Rock Mechanics. Suggested methods for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99–103. DOI: 10.1016/0148-9062(78)90003-7.
    [6] WANG Q Z, XING L. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks [J]. Engineering Fracture Mechanics, 1999, 64(2): 193–201. DOI: 10.1016/S0013-7944(99)00065-X.
    [7] 汤铁钢, 刘仓理. 一种新型爆炸膨胀环实验装置 [J]. 实验力学, 2013, 28(2): 247–254. DOI: 10.7520/1001-4888-12-022.

    TANG T G, LIU C L. A novel experimental setup for explosively loaded expanding ring test [J]. Journal of Experimental Mechanics, 2013, 28(2): 247–254. DOI: 10.7520/1001-4888-12-022.
    [8] WARNES R H, KARPP R R, FOLLANSBEE P S. The freely expanding ring test: a test to determine material strength at high strain rates [J]. Journal of Engineering Materials and Technology, 1986, 108(4): 335–339. DOI: 10.1115/1.3225891.
    [9] 桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.

    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of mental ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
    [10] ZHANG H, RAVI-CHANDAR K. On the dynamics of necking and fragmentation: I: real-time and post-mortem observations in Al 6061-O [J]. International Journal of Fracture, 2006, 142(3): 183–217. DOI: 10.1007/s10704-006-9024-7.
    [11] 王永刚, 周风华. 径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究 [J]. 固体力学学报, 2008, 29(3): 245–249. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005.

    WANG Y G, ZHOU F H. Experimental study on the dynamic tensile framentations of Al2O3 rings under radial expansion [J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 245–249. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005.
    [12] 郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术 [J]. 爆炸与冲击, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.

    ZHENG Y X, ZHOU F H, HU S S. An SHPB-based experimental technique for dynamic fragmentations of expanding rings [J]. Explosion and Shock Waves, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.
    [13] 张佳, 郑宇轩, 周风华. 立式液压膨胀环实验技术研究 [J]. 宁波大学学报(理工版), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.

    ZHANG J, ZHENG Y X, ZHOU F H. Experimental technique for fragmentation of liquid-driven expanding ring [J]. Journal of Ningbo University (Natural Science & Engineering), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.
    [14] 张佳. 基于SHPB的液压膨胀环实验研究[D]. 宁波: 宁波大学, 2017.
    [15] 李天密, 张佳, 方继松, 等. PMMA膨胀环动态拉伸碎裂实验研究 [J]. 力学学报, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.

    LI T M, ZHANG J, FANG J S, et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.
    [16] GRADY D E, KIPP M E. Dynamic rock fragmentation [M]. London: Academic Press Inc., 1987.
    [17] GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1998, 59(4): 1379–1380. DOI: 10.1063/1.336532.
    [18] MILLER O, FREUND L B, NEEDLEMAN A. Modeling and simulation of dynamic fragmentation in brittle materials [J]. International Journal of Fracture, 1999, 96(2): 101–125. DOI: 10.1023/a:1018666317448.
    [19] SHENOY V B, KIM K S. Disorder effects in dynamic fragmentation of brittle materials [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(11−12): 2023–2035. DOI: 10.1016/j.jmps.2003.09.010.
    [20] ZHOU F H, MOLINARI J F, RAMESH K T. A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution [J]. International Journal of Solids and Structures, 2005, 42(18−19): 5181–5207. DOI: 10.1016/j.ijsolstr.2005.02.009.
    [21] ZHOU F H, MOLINARI J F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. DOI: 10.1007/s10704-006-7135-9.
    [22] ZHOU F H, MOLINARI J F, RAMESH K T. Characteristic fragment size distributions in dynamic fragmentation [J]. Applied Physics Letters, 2006, 88(26): 261918. DOI: 10.1063/1.2216892.
    [23] 熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.

    XIONG X, LI T M, MA Q Q, et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.
    [24] 张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2019.
    [25] DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. DOI: 10.1016/s0022-5096(01)00002-3.
    [26] MAITI S, RANGASWAMY K, GEUBELLE P H. Mesoscale analysis of dynamic fragmentation of ceramics under tension [J]. Acta Materialia, 2005, 53(3): 823–834. DOI: 10.1016/j.actamat.2004.10.034.
    [27] 郑宇轩, 陈磊, 胡时胜, 等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律 [J]. 力学学报, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.

    ZHENG Y X, CHEN L, HU S S, et al. Characteristics of fragment size distribution of ductile materials fragmentized under high strainrate tension [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.
  • 加载中
图(7)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  419
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-06-29
  • 刊出日期:  2021-01-05

目录

    /

    返回文章
    返回