A novel technique for determining the dynamic Bauschinger effect by electromagnetic Hopkinson bar
-
摘要: 金属材料在复杂载荷条件下的动态力学行为研究一直备受关注,但受限于实验设备,金属材料的动态包辛格效应响应一直都难以获得。为了探究金属材料的包辛格效应与应变率效应之间的关系,本文中提出一种基于电磁霍普金森杆(electromagnetic split Hopkinson bar,ESHB) 的非同步加载实验技术,为测试金属材料在高应变率加载下的包辛格效应提供了一种有效的实验方法。本文中,首先介绍了非同步加载装置的主要特点,即可以用两列由脉冲发生器产生的应力波对受载试样进行连续的一次动态拉-压循环加载,且加载过程保证了应力波的一致性。分析了应力波对试样加载过程中的波传播历程,确保了加载过程的连续性。随后介绍了动态加载过程,数据处理方法和波形分离手段,并对动态加载过程进行应力平衡性分析,论证了实验装置的可靠性。最后采用该方法测试了5%预应变下6061铝合金动态压缩-动态拉伸的包辛格效应,并与准静态下的实验结果进行对比。实验结果表明,该材料单轴压缩没有明显的应变率效应,但其包辛格效应具有应变率依赖性,高应变率下材料的包辛格应力影响因子由0.07增大至0.17,具有显著的提升,这对传统意义上铝合金材料应变率不敏感的结论提出了挑战。Abstract: Dynamic mechanical behavior of metallic materials under complicated loading conditions has attracted much attention. However, it is hard to obtain the dynamic Bauschinger effect of metallic materials due to the limitation of loading equipment. In order to investigate the relationship between the Bauschinger effect and strain rate effect of metallic materials, this paper proposes an asynchronous loading technique based on electromagnetic split Hopkinson bar system, which could provide an effective way to study the Bauschinger effect of metallic materials under high strain rate loading. We first introduce the main characteristics of the asynchronous loading device, that is, the specimen can be loaded by one cycle of continuous dynamic tension-compression loading pulse in which the two separate stress waves are created by electromagnetic pulse generators and prove to maintain their consistency. The propagation of stress waves was analyzed to ensure the continuity of the loading process. Then the dynamic loading process and the methods of data processing and stress wave separation are presented. Stress equilibrium was also analyzed in order to demonstrate the reliability of the equipment. Finally, the Bauschinger effect of 6061 aluminum alloy at 5% pre-strain during the process of dynamic compression to dynamic tension loading was studied using this method, and the corresponding quasi-static tests were also conducted for comparison. It was found that the material shows less strain-rate sensitivity under axial compression loading, while its Bauschinger stress parameter increases from 0.07 in quasi-static loading to 0.17 in dynamic loading. The results indicate that the Bauschinger effect of 6061 aluminum alloys depends on the strain rate and can be significantly enhanced under dynamic loading. This conclusion presents a challenge to the traditional conception that aluminum alloys are insensitive to strain rate.
-
表 1 采集点可采集到的应力波
Table 1. Stress waves collected at acquisition points
采集点 −1 250 mm −150 mm 1 800 mm 2 500 mm εI1 − εI2 εI2 采集波形 εR1 εT2. εT1 εT1 − − εR2 − 注:(1) εI1为第1列波的入射波;(2) εR1为第1列波的反射波;(3) εT1为第1列波的透射波;(4) εI2为第2列波的入射波;(5) εR2为第2列波的反射波;(6) εT2为第2列波的透射波。 表 2 材料参数
Table 2. Material Parameters
密度/(kg·m−3) 弹性模量/GPa 屈服强度/MPa 泊松比 2.7×103 70 360 0.33 -
[1] BAUSCHINGER J. Changes of the elastic limit and the modulus of elasticity on various metals [J]. Zivilingenieur, 1881, 27: 289–348. [2] STOLTZ R E, PELLOUX R M. The Bauschinger effect in precipitation strengthened aluminum alloys [J]. Metallurgical Transactions A, 1976, 7(8): 1295–1306. DOI: 10.1007/BF02658814. [3] STOUT M G, ROLLETT A D. Large-strain Bauschinger effects in fcc metals and alloys [J]. Metallurgical Transactions A, 1990, 21(12): 3201. DOI: 10.1007/BF02647315. [4] FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect [J]. Materials at High Temperatures, 2007, 24(1): 1–26. DOI: 10.3184/096034007X207589. [5] BUCKLEY S N, ENTWISTLE K M. The Bauschinger effect in super-pure aluminum single crystals and polycrystals [J]. Acta Metallurgica, 1956, 4(4): 352–361. DOI: 10.1016/0001-6160(56)90023-2. [6] ATKINSON J D, BROWN L M, STOBBS W M. The work-hardening of copper-silica: IV: the Bauschinger effect and plastic relaxation [J]. Philosophical Magazine, 1974, 30(6): 1247–1280. DOI: 10.1080/14786437408207280. [7] MOAN G D, EMBURY J D. Study of the Bauschinger effect in Al-Cu alloys [J]. Acta Metallurgica, 1979, 27(5): 903–914. DOI: 10.1016/0001-6160(79)90125-1. [8] HIDAYETOGLU T K, PICA P N, HAWORTH W L. Aging dependence of the Bauschinger effect in aluminum alloy 2024 [J]. Materials Science and Engineering, 1985, 73: 65–76. DOI: 10.1016/0025-5416(85)90296-4. [9] 唐长国, 朱金华, 周惠久. 金属材料屈服强度的应变率效应和热激活理论 [J]. 金属学报, 1995, 31(6): 248–253. DOI: 10.1007/BF02943514.TANG C G, ZHU J H, ZHOU H J. Correlation between yield stress and strain rate for metallic materials and thermal activation approach [J]. Acta Metallrugica Sinica, 1995, 31(6): 248–253. DOI: 10.1007/BF02943514. [10] HOPKINSON B. X A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London: Series A: containing Papers of a Mathematical or Physical Character, 1914, 213(497-508): 437–456. DOI: 10.1098/rsta.1914.0010. [11] MIAO Y, DU B, SHEIKH M Z. On measuring the dynamic elastic modulus for metallic materials using stress wave loading techniques [J]. Archive of Applied Mechanics, 2018, 88(11): 1953–1964. DOI: 10.1007/s00419-018-1422-6. [12] MIAO Y, DU B, MA C, et al. Some fundamental problems concerning the measurement accuracy of the Hopkinson tension bar technique [J]. Measurement Science and Technology, 2019, 30(5): 055009. DOI: 10.1088/1361-6501/ab01b5. [13] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 4–20. DOI: 10.11883/1001-1455(2014)06-0641-17.HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Wave, 2014, 34(6): 4–20. DOI: 10.11883/1001-1455(2014)06-0641-17. [14] 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06. [15] 李玉龙, 郭伟国. 微型 Hopkinson 杆技术 [J]. 爆炸与冲击, 2006, 26(4): 303–308. DOI: 10.11883/1001-1455(2006)04-0303-06.LI Y L, GUO W G. Miniature-Hopkinson bar technique [J]. Explosion and Shock Waves, 2006, 26(4): 303–308. DOI: 10.11883/1001-1455(2006)04-0303-06. [16] 果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.GUO C H, ZHOU P J, LU Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07. [17] THAKUR A, NEMAT-NASSER S, VECCHIO K S. Dynamic Bauschinger effect [J]. Acta materialia, 1996, 44(7): 2797–2807. DOI: 10.1016/1359-6454(95)00385-1. [18] NIE H, SUO T, WU B, et al. A versatile split Hopkinson pressure bar using electromagnetic loading [J]. International Journal of Impact Engineering, 2018, 116: 94–104. DOI: 10.1016/j.ijimpeng.2018.02.002. [19] 苗应刚, 李玉龙, 邓琼, 等. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar [J]. Journal of Beijing Institute of Technology, 2015, 24(2): 269–276. DOI: 10.15918/j.jbit1004-0579.201524.0220.MIAO Y G, LI Y L, DENG Q, et al. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar [J]. Journal of Beijing Institute of Technology, 2015, 24(2): 269–276. DOI: 10.15918/j.jbit1004-0579.201524.0220. [20] NIE H, SUO T, SHI X, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators [J]. International Journal of Impact Engineering, 2018, 122: 73–82. DOI: 10.1016/j.ijimpeng.2018.08.004. [21] RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x. [22] FAN X, SUO T, SUN Q, et al. Dynamic mechanical behavior of 6061 Al alloy at elevated temperatures and different strain rates [J]. Acta Mechanica Solida Sinica, 2013, 26(2): 111–120. DOI: 10.1016/S0894-9166(13)60011-7. 期刊类型引用(19)
1. 甘海龙. 喷水螺杆压缩机在瓦斯压缩中的应用研究. 煤化工. 2023(02): 41-43+52 . 百度学术
2. 甘海龙. 瓦斯气利用发电机尾气余热降温脱水对发电功率的影响研究. 煤化工. 2023(04): 50-52+57 . 百度学术
3. 罗振敏,刘利涛,王涛,张江,程方明. C_2H_6、C_2H_4、CO与H_2对甲烷爆炸压力及动力学特性影响. 工程科学学报. 2022(03): 339-347 . 百度学术
4. 胡芳芳,贾月,王文涛,蒋八运,李世周,程扬帆. 受限空间内乙炔/空气预混气体燃爆特性研究. 火工品. 2022(06): 50-55 . 百度学术
5. 杨龙龙,刘艳,杨春丽. 不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征. 爆炸与冲击. 2021(02): 166-175 . 本站查看
6. 王秋红,王二飞,陈晓坤,蒋军成,张明广. 管道内瓦斯爆炸火焰传播压力与温度特性. 中南大学学报(自然科学版). 2020(01): 239-247 . 百度学术
7. 王晓彬. 点火延迟时间对甲烷煤尘爆炸特性的影响. 煤矿安全. 2020(03): 23-27 . 百度学术
8. 陈国华,董浩宇,张强,赵一新,胡盛,李少鹏. 狭长受限空间甲烷-空气爆炸事故研究评述. 安全与环境学报. 2020(03): 946-959 . 百度学术
9. 孙从煌,曲艳东. 特征管内H_2/Air预混气体燃爆特性数值模拟研究. 爆破. 2020(04): 155-165 . 百度学术
10. 吕鹏飞,张家旭,马利克·哈力木,张瑾,庞磊,杨凯,吕则恺. 初始温度和压力对排污空间甲烷-空气混合物爆燃特性影响的模拟研究. 中国安全生产科学技术. 2019(06): 18-23 . 百度学术
11. 罗振敏,王涛,文虎,张江,程方明,赵婧昱,王秋红,王亚超,刘长春. CO对CH_4爆炸及自由基发射光谱特性的影响. 煤炭学报. 2019(07): 2167-2177 . 百度学术
12. 白刚,周西华,宋东平. 温度与CO气体耦合作用对瓦斯爆炸界限影响实验. 高压物理学报. 2019(04): 189-196 . 百度学术
13. 陈柏封,刘东洋,贺仰琪. 管道瓦斯爆炸冲击波压力传播特性实验研究. 内蒙古煤炭经济. 2018(14): 18-19+10 . 百度学术
14. 曲艳东,孙从煌,朱凯泽,孔祥清,章文娇. 气相爆轰合成纳米TiO_2粉末的实验研究. 稀有金属与硬质合金. 2017(06): 48-53 . 百度学术
15. 高娜,胡毅亭,张延松. 初始温度对甲烷-空气爆炸压力影响的试验研究. 爆破器材. 2016(03): 26-30 . 百度学术
16. 高娜,张延松,胡毅亭. 温度压力对瓦斯爆炸危险性影响的实验研究. 爆炸与冲击. 2016(02): 218-223 . 本站查看
17. 张玉磊,李芝绒,蒋海燕,翟红波,袁建飞,仲凯. 初始压力对TNT密闭空间爆炸温度的影响. 火工品. 2016(06): 44-47 . 百度学术
18. 张迎新,李世超. 煤尘影响瓦斯爆炸冲击波的实验研究. 黑龙江科技大学学报. 2016(04): 387-390 . 百度学术
19. 杨凯,丁志江,肖立春,李强. 发生炉煤气在电除尘器中爆炸与泄爆过程的数值模拟. 燕山大学学报. 2015(02): 182-188 . 百度学术
其他类型引用(29)
-