高韦伯数条件下黏性对液滴变形过程的影响

申帅 李建玲 刘金宏 范玮

申帅, 李建玲, 刘金宏, 范玮. 高韦伯数条件下黏性对液滴变形过程的影响[J]. 爆炸与冲击, 2020, 40(12): 123201. doi: 10.11883/bzycj-2020-0051
引用本文: 申帅, 李建玲, 刘金宏, 范玮. 高韦伯数条件下黏性对液滴变形过程的影响[J]. 爆炸与冲击, 2020, 40(12): 123201. doi: 10.11883/bzycj-2020-0051
SHEN Shuai, LI Jianling, LIU Jinhong, FAN Wei. Viscous effect on the droplet deformation process under high Weber number conditions[J]. Explosion And Shock Waves, 2020, 40(12): 123201. doi: 10.11883/bzycj-2020-0051
Citation: SHEN Shuai, LI Jianling, LIU Jinhong, FAN Wei. Viscous effect on the droplet deformation process under high Weber number conditions[J]. Explosion And Shock Waves, 2020, 40(12): 123201. doi: 10.11883/bzycj-2020-0051

高韦伯数条件下黏性对液滴变形过程的影响

doi: 10.11883/bzycj-2020-0051
基金项目: 国家自然科学基金(11772309);NSAF联合基金(U1730134);科学挑战专题(TZ2016001);西北工业大学博士生创新基金(CX201949);冲击波物理与爆轰物理重点实验室基金(6142A03180304)
详细信息
    作者简介:

    申 帅(1993- ),男,博士,kanshui2008@163.com

    通讯作者:

    李建玲(1983- ),女,博士,教授,lijianling@mail.nwpu.edu.cn

  • 中图分类号: O351

Viscous effect on the droplet deformation process under high Weber number conditions

  • 摘要: 为探究液滴黏性对变形过程的影响,深入了解液滴在冲击波作用下变形破碎的行为机制。采用高速阴影技术在水平激波管上拍摄了高韦伯数(We=1 100~4 400)条件下,3种黏性硅油液滴的变形过程。结果表明随着黏性的提升:液滴演化出相应特征所需时间增大,同时会出现新的变形特征;液滴空间及位移特征参数的生长速率降低而变形时间、最大变形高度/位移都增大,这是因为提升的黏性力降低了变形速率、耗散了更多的动能并延长了液滴的变形过程;液滴表面最不稳定的Kelvin-Helmholtz波朝着大尺度、低生长率的方向发展,从而实现黏性对变形过程的延缓作用。随着最大变形位移的增大,最大变形高度首先线性增长,之后增幅降低。
  • 图  1  液滴迎/背风面、垂直气流高度及迎风面位移的定义

    Figure  1.  Definitions of windward/leeward cross-stream diameterand windward displacement

    图  2  实验系统

    Figure  2.  Experimental system

    图  3  第1组 (We=1 100±100)条件下液滴的变形过程

    Figure  3.  Deformation processes of group 1 (We=1 100±100)

    图  4  第2组(We=2400±50)条件下液滴的变形过程

    Figure  4.  Deformation processes of group 2 (We=2400±50)

    图  5  第3组条件下液滴的变形过程(We=4150±150)

    Figure  5.  Deformation processes of group 3 (We=4150±150)

    图  6  第1组条件下无量纲垂直气流高度dc/d0和无量纲迎风面位移S/d0随无量纲时间T的变化关系

    Figure  6.  Variation of dimensionless droplet cross-stream diameter (dc/d0) and dimensionless windward displacement (S/d0) with (T) of group 1

    图  7  第2组条件下无量纲垂直气流高度dc/d0及无量纲迎风面位移S/d0随无量纲时间T的变化关系

    Figure  7.  Variation of dimensionless droplet cross-stream diameter (dc/d0) and dimensionless windward displacement (S/d0) with (T) of group 2

    图  8  第3组条件下无量纲垂直气流高度dc/d0及无量纲迎风面位移S/d0随无量纲时间T的变化关系

    Figure  8.  Variation of dimensionless droplet cross-stream diameter (dc/d0) and dimensionless windward displacement (S/d0) with (T) of group 3

    图  9  无量纲最大变形高度(dc/d0)max及无量纲变形时间Tini随奥内佐格数Oh变化的关系

    Figure  9.  Variation of maximum dimensionless droplet cross-stream diameter ((dc/d0)max) and dimensionless initiation time (Tini) with Ohnesorge number (Oh)

    图  10  不同韦伯数We条件下无量纲最大变形位移(S/d0)max随奥内佐格数Oh的变化关系

    Figure  10.  Variation of maximum dimensionless windward displacement ((S/d0)max) with Ohnesorge number (Oh) under different Weber number (We)

    图  11  无量纲最大变形位移(S/d0)max与无量纲最大变形高度(dc/d0)max的变化关系

    Figure  11.  Variation of maximum dimensionless droplet cross-stream diameter ((dc/d0)max) with maximum dimensionless windward displacement ((S/d0)max)

    图  12  三种组别条件下K-H波增长率(n)随波数(k)的变化关系

    Figure  12.  Variation of wave growth rate (n) with wave number (k) of three groups

    图  13  三种组别条件下无量纲最大增长率波长$ \lambda _{\rm{max}}{/}{{d}}_{{0}} $及最大增长率nmax随奥内佐格数Oh的变化关系

    Figure  13.  Variation of dimensionless maximum wavelength ($ \lambda _{\rm{max}}{/}{{d}}_{{0}} $) and maximmum increasing rate (nmax) with Oh of three groups

    表  1  实验工况参数

    Table  1.   Parameters of experimental conditions

    分组编号μl/(mPa∙s)ρl/(kg·m−3)d0/mmug/(m·s−1)ρg/(kg·m−3)WeOh
    1Case 1109170.90123.951.6510850.076
    Case 2509430.90126.471.6611360.375
    Case 31009470.83132.461.6911690.779
    2Case 4109170.79183.201.9224290.081
    Case 5509430.86178.741.9024870.383
    Case 61009470.90172.891.8723860.749
    3Case 7109170.86218.072.0840600.078
    Case 8509430.90219.372.0942850.375
    Case 91009470.93211.992.0540860.735
     注:$ \sigma $=0.021 N/m
    下载: 导出CSV
  • [1] REINECKE W, WALDMAN G. Shock layer shattering of cloud drops in reentry flight [C] // Pasadena, AIAA, 13th Aerospace Sciences Meeting, 1975. DOI: 10.2514/6.1975-152.
    [2] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. DOI: 10.1016/j.pecs.2004.05.001.
    [3] LI J L, FAN W, YAN C J, et al. Experimental investigations on detonation initiation in a kerosene-oxygen pulse detonation rocket engine [J]. Combustion Science and Technology, 2009, 181(3): 417–432. DOI: 10.1080/00102200802612310.
    [4] LI J L, FAN W, YAN C J, et al. Performance enhancement of a pulse detonation rocket engine [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2243–2254. DOI: 10.1016/j.proci.2010.07.048.
    [5] GUILDENBECHER D R, LóPEZ-RIVERA C, SOJKA P E. Secondary atomization [J]. Experiments in Fluids, 2009, 46(3): 371–402. DOI: 10.1007/s00348-008-0593-2.
    [6] LANE W R. Shatter of drops in streams of air [J]. Industrial & Engineering Chemistry, 1951, 43(e): 1312–1317. DOI: 10.1021/ie50498a022.
    [7] HINZE J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes [J]. AIChE Journal, 1955, 1(3): 289–295. DOI: 10.1002/aic.690010303.
    [8] CHOU W H, FAETH G M. Temporal properties of secondary drop breakup in the bag breakup regime [J]. International Journal of Multiphase Flow, 1998, 24(6): 889–912. DOI: 10.1016/s0301-9322(98)00015-9.
    [9] HSIANG L P, FAETH G M. Near-limit drop deformation and secondary breakup [J]. International Journal of Multiphase Flow, 1992, 18(5): 635–652. DOI: 10.1016/0301-9322(92)90036-g.
    [10] THEOFANOUS T G, LI G J. On the physics of aerobreakup [J]. Physics of Fluids, 2008, 20(5): 052103. DOI: 10.1063/1.2907989.
    [11] THEOFANOUS T G. Aerobreakup of newtonian and viscoelastic liquids [J]. Annual Review of Fluid Mechanics, 2011, 43: 661–690. DOI: 10.1146/annurev-fluid-122109-160638.
    [12] THEOFANOUS T G, MITKIN V V, NG C L, et al. The physics of aerobreakup: II: Viscous liquids [J]. Physics of Fluids, 2012, 24(2): 022104. DOI: 10.1063/1.3680867.
    [13] SHEN S, LI J L, TANG C L, et al. The viscous effect on the transient droplet deformation process under the action of shock wave [J]. Atomization and Sprays, 2019, 29(2): 105–121. DOI: 10.1615/AtomizSpr.2019030070.
    [14] 王超, 吴宇, 施红辉, 等. 液滴在激波冲击下的破裂过程 [J]. 爆炸与冲击, 2016, 36: 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.

    WANG C, WU Y, SHI H H, et al. Breakup process of a droplet under the impact of a shock wave [J]. Explosion and Shock Waves, 2016, 36: 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.
    [15] 施红辉, 刘晨, 熊红平, 等. 激波冲击下液滴变形破碎的黏性特征 [J]. 航空动力学报, 2019, 34(9): 1962–1970. DOI: 10.13224/j.cnki.jasp.2019.09.013.

    SHI H H, LIU C, XIONG H P, et al. Viscositycharacteristicsof droplet deformation and breakup under shock wave [J]. Journal of Aerospace Power, 2019, 34(9): 1962–1970. DOI: 10.13224/j.cnki.jasp.2019.09.013.
    [16] CHENG S, CHANDRA S. A pneumatic droplet-on-demand generator [J]. Experiments in Fluids, 2003, 34: 755–762. DOI: 10.1007/s00348-003-0629-6.
    [17] JOSEPH D D, BELANGER J, BEAVERS G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream [J]. International Journal of Multiphase Flow, 1999, 25(6−7): 1263–1303. DOI: 10.1016/s0301-9322(99)00043-9.
    [18] 孔上峰, 封锋, 邓寒玉. 高韦伯数下煤油液滴的破碎机理研究 [J]. 实验流体力学, 2017, 31(1): 20–25. DOI: 10.11729/syltlx20160106.

    KONG S F, FENG F, DENG H Y. Breakup of a kerosene droplet at high Weber numbers [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20–25. DOI: 10.11729/syltlx20160106.
    [19] CAO X K, SUN Z G, LI W F, et al. A new breakup regime of liquid drops identified in a continuous and uniform air jet flow [J]. Physics of Fluids, 2007, 19(5): 057103. DOI: 10.1063/1.2723154.
    [20] PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop [J]. International Journal of Multiphase Flow, 1987, 13(16): 741–757. DOI: 10.1016/0301-9322(87)90063-2.
    [21] 王继海. 二维非定常流和激波[M]. 北京: 科学出版社, 1994: 348−376.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1365
  • HTML全文浏览量:  752
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-06-23
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回