Viscous effect on the droplet deformation process under high Weber number conditions
-
摘要: 为探究液滴黏性对变形过程的影响,深入了解液滴在冲击波作用下变形破碎的行为机制。采用高速阴影技术在水平激波管上拍摄了高韦伯数(We=1 100~4 400)条件下,3种黏性硅油液滴的变形过程。结果表明随着黏性的提升:液滴演化出相应特征所需时间增大,同时会出现新的变形特征;液滴空间及位移特征参数的生长速率降低而变形时间、最大变形高度/位移都增大,这是因为提升的黏性力降低了变形速率、耗散了更多的动能并延长了液滴的变形过程;液滴表面最不稳定的Kelvin-Helmholtz波朝着大尺度、低生长率的方向发展,从而实现黏性对变形过程的延缓作用。随着最大变形位移的增大,最大变形高度首先线性增长,之后增幅降低。
-
关键词:
- 激波 /
- 液滴黏性 /
- 变形过程 /
- 高韦伯数 /
- Kelvin-Helmholtz不稳定性
Abstract: To explore the effect of droplet viscosity on the deformation process, and have a deep understanding of the mechanism of the droplet deformation and breakup process.Droplet deformation behaviors of three viscous silicone oils were experimentally captured by the high-speed shadowgraphic technique on a horizontal shock tube, the Weber number (We) ranged between 1 100~4 400. Results show that with the increasing of droplet viscosity: new deformation characteristics appear, and the duration that the droplet evolves into the special shape increases; The growth rates of characteristic space and displacement parameters all decrease, while the duration of the deformation process, the maximum of the droplet deformation extent/displacement all increase. This is because the enlarged viscous force has slowed down the deformation rate, consumed more inertia, and extended the deformation process;The most unstable wave of Kelvin-Helmholtz instability develops toward a larger scale and a slower growth rate tendency, thus the delaying effect caused by the viscosity on the deformation process is achieved.With the increasing of the maximum of deformation displacement, the maximum of droplet deformation extent firstly shows a linear growth trend then a slower growth rate.-
Key words:
- shock wave /
- droplet viscosity /
- deformation process /
- high Weber number /
- Kelvin-Helmholtz instability
-
表 1 实验工况参数
Table 1. Parameters of experimental conditions
分组 编号 μl/(mPa∙s) ρl/(kg·m−3) d0/mm ug/(m·s−1) ρg/(kg·m−3) We Oh 1 Case 1 10 917 0.90 123.95 1.65 1085 0.076 Case 2 50 943 0.90 126.47 1.66 1136 0.375 Case 3 100 947 0.83 132.46 1.69 1169 0.779 2 Case 4 10 917 0.79 183.20 1.92 2429 0.081 Case 5 50 943 0.86 178.74 1.90 2487 0.383 Case 6 100 947 0.90 172.89 1.87 2386 0.749 3 Case 7 10 917 0.86 218.07 2.08 4060 0.078 Case 8 50 943 0.90 219.37 2.09 4285 0.375 Case 9 100 947 0.93 211.99 2.05 4086 0.735 注:$ \sigma $=0.021 N/m -
[1] REINECKE W, WALDMAN G. Shock layer shattering of cloud drops in reentry flight [C] // Pasadena, AIAA, 13th Aerospace Sciences Meeting, 1975. DOI: 10.2514/6.1975-152. [2] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. DOI: 10.1016/j.pecs.2004.05.001. [3] LI J L, FAN W, YAN C J, et al. Experimental investigations on detonation initiation in a kerosene-oxygen pulse detonation rocket engine [J]. Combustion Science and Technology, 2009, 181(3): 417–432. DOI: 10.1080/00102200802612310. [4] LI J L, FAN W, YAN C J, et al. Performance enhancement of a pulse detonation rocket engine [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2243–2254. DOI: 10.1016/j.proci.2010.07.048. [5] GUILDENBECHER D R, LóPEZ-RIVERA C, SOJKA P E. Secondary atomization [J]. Experiments in Fluids, 2009, 46(3): 371–402. DOI: 10.1007/s00348-008-0593-2. [6] LANE W R. Shatter of drops in streams of air [J]. Industrial & Engineering Chemistry, 1951, 43(e): 1312–1317. DOI: 10.1021/ie50498a022. [7] HINZE J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes [J]. AIChE Journal, 1955, 1(3): 289–295. DOI: 10.1002/aic.690010303. [8] CHOU W H, FAETH G M. Temporal properties of secondary drop breakup in the bag breakup regime [J]. International Journal of Multiphase Flow, 1998, 24(6): 889–912. DOI: 10.1016/s0301-9322(98)00015-9. [9] HSIANG L P, FAETH G M. Near-limit drop deformation and secondary breakup [J]. International Journal of Multiphase Flow, 1992, 18(5): 635–652. DOI: 10.1016/0301-9322(92)90036-g. [10] THEOFANOUS T G, LI G J. On the physics of aerobreakup [J]. Physics of Fluids, 2008, 20(5): 052103. DOI: 10.1063/1.2907989. [11] THEOFANOUS T G. Aerobreakup of newtonian and viscoelastic liquids [J]. Annual Review of Fluid Mechanics, 2011, 43: 661–690. DOI: 10.1146/annurev-fluid-122109-160638. [12] THEOFANOUS T G, MITKIN V V, NG C L, et al. The physics of aerobreakup: II: Viscous liquids [J]. Physics of Fluids, 2012, 24(2): 022104. DOI: 10.1063/1.3680867. [13] SHEN S, LI J L, TANG C L, et al. The viscous effect on the transient droplet deformation process under the action of shock wave [J]. Atomization and Sprays, 2019, 29(2): 105–121. DOI: 10.1615/AtomizSpr.2019030070. [14] 王超, 吴宇, 施红辉, 等. 液滴在激波冲击下的破裂过程 [J]. 爆炸与冲击, 2016, 36: 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.WANG C, WU Y, SHI H H, et al. Breakup process of a droplet under the impact of a shock wave [J]. Explosion and Shock Waves, 2016, 36: 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06. [15] 施红辉, 刘晨, 熊红平, 等. 激波冲击下液滴变形破碎的黏性特征 [J]. 航空动力学报, 2019, 34(9): 1962–1970. DOI: 10.13224/j.cnki.jasp.2019.09.013.SHI H H, LIU C, XIONG H P, et al. Viscositycharacteristicsof droplet deformation and breakup under shock wave [J]. Journal of Aerospace Power, 2019, 34(9): 1962–1970. DOI: 10.13224/j.cnki.jasp.2019.09.013. [16] CHENG S, CHANDRA S. A pneumatic droplet-on-demand generator [J]. Experiments in Fluids, 2003, 34: 755–762. DOI: 10.1007/s00348-003-0629-6. [17] JOSEPH D D, BELANGER J, BEAVERS G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream [J]. International Journal of Multiphase Flow, 1999, 25(6−7): 1263–1303. DOI: 10.1016/s0301-9322(99)00043-9. [18] 孔上峰, 封锋, 邓寒玉. 高韦伯数下煤油液滴的破碎机理研究 [J]. 实验流体力学, 2017, 31(1): 20–25. DOI: 10.11729/syltlx20160106.KONG S F, FENG F, DENG H Y. Breakup of a kerosene droplet at high Weber numbers [J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20–25. DOI: 10.11729/syltlx20160106. [19] CAO X K, SUN Z G, LI W F, et al. A new breakup regime of liquid drops identified in a continuous and uniform air jet flow [J]. Physics of Fluids, 2007, 19(5): 057103. DOI: 10.1063/1.2723154. [20] PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop [J]. International Journal of Multiphase Flow, 1987, 13(16): 741–757. DOI: 10.1016/0301-9322(87)90063-2. [21] 王继海. 二维非定常流和激波[M]. 北京: 科学出版社, 1994: 348−376.