Analysis of characteristic control parameters of long-rod penetration
-
摘要: 针对理想长杆侵彻,通过对长杆侵彻Alekseevskii-Tate模型近似解进行分析,指出单一的无量纲速度衰减系数α(deceleration index)不足以完全表征长杆高速侵彻的准定常阶段。在此基础上,重新定义了2个无量纲特征参量:Johnson破坏数ΦJp和特征时间系数β,2个参量之间的关系为α=β/ΦJp。分析表明,ΦJp和β(或α和β)可实现对长杆高速侵彻准定常阶段的弹尾速度的完全表征;若再引入长杆弹相对临界速度vc*,则可完全表征长杆侵彻的准定常阶段。此外,还证明了α能够判定侵彻过程偏离定常状态的程度,并指出通过确定ΦJp和β(或α和β),可针对攻防需求对长杆弹侵彻设计进行指导。
-
关键词:
- 长杆侵彻 /
- Alekseevskii-Tate模型 /
- 特征参量 /
- Johnson破坏数 /
- 特征时间系数 /
- 无量纲速度衰减系数
Abstract: For ideal long-rod penetration, by analyzing the approximate solutions of the Alekseevskii-Tate model for long-rod penetration, it is pointed out that the single deceleration index α is not sufficient to fully describle the quasi-steady process of long-rod penetration. This paper redefines two dimensionless parameters, namely Johnson demage parameter ΦJp and characteristic time parameter β, and α=β/ΦJp. The analysis shows that two characteristic parameters ΦJp and β (or α and β) can completely characterize the impact velocity of the projectile tail in the quasi-steady process of long-rod penetration. If the dimensionless critical impact velocity vc* is introduced, the quasi-steady process of long-rod penetration can be fully characterized. In addition, this paper strictly proves that the degree of deviation from the steady state in the penetration process can be determined by α, and confirms that by determining ΦJp and β (or α and β), the design of long-rod penetration can be guided for offensive and defensive needs. -
表 1 长杆侵彻设计工况中的相关参数
Table 1. Related parameters of long-rod penetration design
v0/(km·s−1) L/mm $\ {\rho _{\rm{p} } }$/(g·cm−3) $\ {\rho _{\rm{t} } }$/(g·cm−3) ${Y_{\rm{p}}}$/GPa ${R_{\rm{t}}}$/GPa 1.5 81.7 17.4 7.8 2.0 4.94 表 2 设计工况中相关参数
Table 2. Summary of parameters in the designed cases
工况 ${v_{\rm{0}}}$/
(km·s−1)$L$/
mm$\ {\rho _{\rm{p}}}$/
(g·cm−3)$\ {\rho _{\rm{t}}}$/
(g·cm−3)${Y_{\rm{p}}}$/GPa $\alpha $/% ${\varPhi _{{\rm{Jp}}}}$ $\ \beta $ 1 1.5 100 19.00 9.00 2.0 11.48 21.375 2.453 2 1.5 50 19.00 9.00 2.0 11.48 21.375 2.453 3 3.0 100 19.00 9.00 2.0 2.87 85.500 2.453 4 3.0 100 13.00 9.00 2.0 3.76 58.500 2.202 5 3.0 100 13.00 5.00 2.0 4.47 58.500 2.612 6 1.5 100 19.00 9.00 1.0 5.74 42.750 2.453 7 1.5 100 23.75 5.56 2.0 11.48 26.719 3.067 8 1.5 100 19.00 12.56 2.2 11.48 19.432 2.230 9 1.5 100 19.00 9.00 0 0 ∞ 2.453 -
[1] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021. [2] ALLEN W A, ROGERS J W. Penetration of a rod into a semi-infinite target [J]. Journal of the Franklin Institute, 1961, 272(4): 275–284. DOI: 10.1016/0016-0032(61)90559-2. [3] ALEKSEEVSKII V P. Penetration of a rod into a target at high velocity [J]. Combustion, Explosion and Shock Waves, 1966, 2(2): 63–66. DOI: 10.1007/BF00749237. [4] TATE A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387–399. DOI: 10.1016/0022-5096(67)90010-5. [5] TATE A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 141–150. DOI: 10.1016/0022-5096(69)90028-3. [6] 焦文俊. 长杆高速侵彻的1D和2D理论模型 [D]. 合肥: 中国科学技术大学, 2019. [7] JIAO W J, CHEN X W. Analysis of the velocity relationship and deceleration of long-rod penetration [J]. Acta Mechanica Sinica, 2019, 35(4): 852–865. DOI: 10.1007/s10409-019-00862-1. [8] JIAO W J, CHEN X W. Approximate solutions of the Alekseevskii-Tate model of long-rod penetration [J]. Acta Mechanica Sinica, 2018, 34(2): 334–348. DOI: 10.1007/s10409-017-0672-9. [9] WALTERS W, WILLIAMS C, NORMANDIA M. An explicit solution of the Alekseevski-Tate penetration equations [J]. International Journal of Impact Engineering, 2006, 33(1−12): 837–846. DOI: 10.1016/j.ijimpeng.2006.09.057. [10] ANDERSON Jr C E, WALKER J D. An examination of long-rod penetration [J]. International Journal of Impact Engineering, 1991, 11(4): 481–501. DOI: 10.1016/0734-743X(91)90015-8.