长杆高速侵彻的特征控制参量分析

尹志勇 陈小伟

尹志勇, 陈小伟. 长杆高速侵彻的特征控制参量分析[J]. 爆炸与冲击, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057
引用本文: 尹志勇, 陈小伟. 长杆高速侵彻的特征控制参量分析[J]. 爆炸与冲击, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057
YIN Zhiyong, CHEN Xiaowei. Analysis of characteristic control parameters of long-rod penetration[J]. Explosion And Shock Waves, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057
Citation: YIN Zhiyong, CHEN Xiaowei. Analysis of characteristic control parameters of long-rod penetration[J]. Explosion And Shock Waves, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057

长杆高速侵彻的特征控制参量分析

doi: 10.11883/bzycj-2020-0057
基金项目: 国家自然科学基金(11627901,11872118)
详细信息
    作者简介:

    尹志勇(1998- ),男,硕士研究生,3120200140@bit.edu.cn

    通讯作者:

    陈小伟(1967- ),男,博士,教授,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O389

Analysis of characteristic control parameters of long-rod penetration

  • 摘要: 针对理想长杆侵彻,通过对长杆侵彻Alekseevskii-Tate模型近似解进行分析,指出单一的无量纲速度衰减系数α(deceleration index)不足以完全表征长杆高速侵彻的准定常阶段。在此基础上,重新定义了2个无量纲特征参量:Johnson破坏数ΦJp和特征时间系数β,2个参量之间的关系为α=β/ΦJp。分析表明,ΦJpβ(或αβ)可实现对长杆高速侵彻准定常阶段的弹尾速度的完全表征;若再引入长杆弹相对临界速度vc*,则可完全表征长杆侵彻的准定常阶段。此外,还证明了α能够判定侵彻过程偏离定常状态的程度,并指出通过确定ΦJpβ(或αβ),可针对攻防需求对长杆弹侵彻设计进行指导。
  • 图  1  长杆高速侵彻过程无量纲化速度衰减示意图

    Figure  1.  Schematic of the deceleration of dimensionless tail velocity during long-rod penetration process

    图  2  无量纲系数$\ \beta $${v_{\rm{0}}}$${\ \rho _{\rm{p}}}$${\ \rho _{\rm{t}}}$${Y_{\rm{p}}}$${R_{\rm{t}}}$的变化情况

    Figure  2.  Variation of dimensionless coefficient $\ \beta$ with ${v_{\rm{0}}}$, ${\ \rho _{\rm{p}}}$, ${\ \rho _{\rm{t}}}$, ${Y_{\rm{p}}}$ and ${R_{\rm{t}}}$

    图  3  不同工况下瞬时弹尾速度在侵彻过程中的变化

    Figure  3.  Variation of instant tail velocities during penetration process in different cases

    表  1  长杆侵彻设计工况中的相关参数

    Table  1.   Related parameters of long-rod penetration design

    v0/(km·s−1)L/mm$\ {\rho _{\rm{p} } }$/(g·cm−3)$\ {\rho _{\rm{t} } }$/(g·cm−3)${Y_{\rm{p}}}$/GPa${R_{\rm{t}}}$/GPa
    1.581.717.47.82.04.94
    下载: 导出CSV

    表  2  设计工况中相关参数

    Table  2.   Summary of parameters in the designed cases

    工况${v_{\rm{0}}}$/
    (km·s−1)
    $L$/
    mm
    $\ {\rho _{\rm{p}}}$/
    (g·cm−3)
    $\ {\rho _{\rm{t}}}$/
    (g·cm−3)
    ${Y_{\rm{p}}}$/GPa$\alpha $/%${\varPhi _{{\rm{Jp}}}}$$\ \beta $
    11.510019.009.002.011.4821.3752.453
    21.5 5019.009.002.011.4821.3752.453
    33.010019.009.002.02.8785.5002.453
    43.010013.009.002.03.7658.5002.202
    53.010013.005.002.04.4758.5002.612
    61.510019.009.001.05.7442.7502.453
    71.510023.755.562.011.4826.7193.067
    81.510019.0012.562.211.4819.4322.230
    91.510019.009.00002.453
    下载: 导出CSV
  • [1] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.
    [2] ALLEN W A, ROGERS J W. Penetration of a rod into a semi-infinite target [J]. Journal of the Franklin Institute, 1961, 272(4): 275–284. DOI: 10.1016/0016-0032(61)90559-2.
    [3] ALEKSEEVSKII V P. Penetration of a rod into a target at high velocity [J]. Combustion, Explosion and Shock Waves, 1966, 2(2): 63–66. DOI: 10.1007/BF00749237.
    [4] TATE A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387–399. DOI: 10.1016/0022-5096(67)90010-5.
    [5] TATE A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 141–150. DOI: 10.1016/0022-5096(69)90028-3.
    [6] 焦文俊. 长杆高速侵彻的1D和2D理论模型 [D]. 合肥: 中国科学技术大学, 2019.
    [7] JIAO W J, CHEN X W. Analysis of the velocity relationship and deceleration of long-rod penetration [J]. Acta Mechanica Sinica, 2019, 35(4): 852–865. DOI: 10.1007/s10409-019-00862-1.
    [8] JIAO W J, CHEN X W. Approximate solutions of the Alekseevskii-Tate model of long-rod penetration [J]. Acta Mechanica Sinica, 2018, 34(2): 334–348. DOI: 10.1007/s10409-017-0672-9.
    [9] WALTERS W, WILLIAMS C, NORMANDIA M. An explicit solution of the Alekseevski-Tate penetration equations [J]. International Journal of Impact Engineering, 2006, 33(1−12): 837–846. DOI: 10.1016/j.ijimpeng.2006.09.057.
    [10] ANDERSON Jr C E, WALKER J D. An examination of long-rod penetration [J]. International Journal of Impact Engineering, 1991, 11(4): 481–501. DOI: 10.1016/0734-743X(91)90015-8.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  426
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-06-30
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回