Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments
-
摘要: 将W骨架/Zr基非晶合金复合材料破片装入弹体制备成预制破片弹丸,并进行实爆试验,研究W骨架/Zr基非晶合金复合材料预制破片侵彻靶板的能力,以及预制破片贯穿靶板后对棉被、油箱的引燃能力。结果表明:制备的W骨架/Zr基非晶合金复合材料密度大、强度高,爆炸完整性和侵彻能力能够满足作为榴弹预制破片的要求;W骨架/Zr基非晶合金复合材料破片侵彻过程中自身变形是影响侵彻能力的主要原因之一;W骨架/Zr基非晶合金复合材料预制破片侵彻和贯穿靶板的过程中伴随着强烈的爆轰,当穿透率足够高时,预制破片的爆轰作用能够引燃靶后的棉被和油箱。
-
关键词:
- W骨架/Zr基非晶合金复合材料 /
- 破片 /
- 侵彻能力 /
- 引燃能力
Abstract: Zr-based metallic glass reinforced porous W matrix composite was prepared into fragments and loaded with grenade to study on penetration ability and aftereffect of fragments by explosion experiment. The results show that the Zr-based metallic glass reinforced porous W matrix composite has high density and strength, and the explosive integrity and penetration ability can meet the requirements of the shrapnel preformed fragments; the deformation of the Zr-based metallic glass reinforced porous W matrix composite fragments during the penetration process is one of the main reasons affecting the penetration ability of the metallic glass composite fragments; if the penetration ratio is high enough, the detonation effect of the preformed fragments can ignite the quilt and oil tank behind the target. -
表 1 非晶合金复合材料破片侵彻能力及后效情况
Table 1. Penetration ability and aftereffect of metallic glass composite fragments
靶板编号 b/mm Rt/m 第一次棉被引燃试验 第二次棉被引燃试验 第一次油箱引燃试验 nn ny 是否燃烧 nn ny 是否燃烧 nn ny 是否燃烧 1 10 3 10 0 否 9 0 否 3 2 否 2 8 5 5 5 否 1 0 否 1 2 否 3 8 5 5 0 否 5 3 否 3 0 否 4 6 7 4 0 否 4 0 否 2 0 否 5 6 7 5 2 否 2 1 否 4 6 是 6 6 7 7 12 是 3 1 否 4 4 是 7 4 10 0 0 否 5 5 否 3 1 否 8 4 10 4 4 否 2 13 是 6 1 否 9 4 10 2 1 否 1 2 否 1 0 否 10 4 10 0 0 否 1 1 否 2 0 否 注:b为靶板厚度,Rt为靶板与炸点间的距离,ny为穿透靶板的破片个数,nn为未穿透靶板的破片个数. 表 2 第二次油箱引燃试验非晶合金复合材料破片侵彻能力及后效情况
Table 2. Penetration ability and aftereffect of metallic glass composite fragments in the second fuel tank pilot test
靶板编号 b/mm Rt/m nn ny 是否燃烧 1 8 3 12 0 否 2 6 5 15 6 是 3 6 5 2 9 是 4 6 7 5 3 是 5 6 7 9 0 否 6 6 7 10 0 否 7 6 10 2 0 否 8 6 10 5 0 否 9 6 10 1 1 否 10 6 10 1 0 否 表 3 破片飞行速度
Table 3. Fragment speed
距爆心距离/m 速度/(m·s−1) 误差 实测值 计算值 3 1 135.135 − − 5 1 044.776 1 105.979 0.058 6 7 1 042.550 1 077.572 0.033 6 10 979.021 1 036.324 0.058 5 表 4 破片命中靶板不同位置的速度
Table 4. Velocities of fragments hitting different positions of the steel plate
命中靶心情形 命中四角情形 速度误差 R/m v/(m·s−1) R/m v/(m·s−1) 3 1 135.135 3.132 5 1 133.180 0.001 725 5 1 044.776 5.080 6 1 043.681 0.001 049 7 1 042.550 7.057 8 1 041.766 0.000 752 10 979.021 10.040 5 978.505 0.000 528 表 5 三次试验非晶合金复合材料破片侵彻能力汇总分析表
Table 5. Summary and analysis of penetration ability of metallic glass composite fragments in three tests
序号 Rt/m b/mm N nn ny n Pth 1 3 10 3 22 2 24 0.083 2 5 8 6 20 10 30 0.333 3 7 6 9 35 26 61 0.426 4 10 4 12 27 28 55 0.509 注:N为靶板个数,n为破片总数,Pth为穿透率. 表 6 试验破片靶板穿透率理论计算结果
Table 6. Theoretical penetration ratios of fragments to target plates
序号 Rt/m b/mm 式(4)结果 式(5)结果 式(6)结果 bal/mm Pth bal/mm Pth bal/mm Pth 1 3 10 12.66 0.988 43 23.38 0.854 73 11.61 0.992 99 2 5 8 10.13 0.991 64 18.7 0.878 02 9.29 0.995 08 3 7 6 7.59 0.998 79 14.03 0.956 58 6.97 0.999 39 4 10 4 5.06 0.999 90 9.35 0.988 88 4.64 0.999 96 -
[1] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114. [2] 黄劲松, 刘咏, 陈仕奇, 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.HUANG J S, LIU Y, CHEN S Q, et al. Progress and application of Zr-based amorphous alloys [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001. [3] 阮芳, 姚可夫. 高强度Zr基大块非晶合金的研究进展 [J]. 材料导报, 2005, 19(9): 8–11. DOI: 10.3321/j.issn:1005-023X.2005.09.003.RUAN F, YAO K F. Research progress of high strength Zr-based bulk amorphous alloys [J]. Materials Reports, 2005, 19(9): 8–11. DOI: 10.3321/j.issn:1005-023X.2005.09.003. [4] INOUE A, ZHANG T, MASUMOTO T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method [J]. Materials Transactions, JIM, 1990, 31(5): 425–428. DOI: 10.2320/matertrans1989.31.425. [5] ZHANG B, FU H M, SHA P F, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites [J]. Materials Science and Engineering: A, 2013, 566: 16–21. DOI: 10.1016/j.msea.2012.12.080. [6] 张海峰. 非晶复合材料制备与性能 [J]. 中国材料进展, 2010, 29(11): 8–15.ZHANG H F. Preparation and properties of amorphous composite materials [J]. Materials China, 2010, 29(11): 8–15. [7] CONNER R D, CHOI-YIM H, JOHNSON W L. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites [J]. Journal of Materials Research, 1999, 14(8): 3292–3297. DOI: 10.1557/JMR.1999.0445. [8] CHOI-YIM H, SCHROERS J, JOHNSON W L. Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites [J]. Applied Physics Letters, 2002, 80(11): 1906–1908. DOI: 10.1063/1.1459766. [9] 邱克强, 任英磊. 钨颗粒增强大块非晶复合材料 [J]. 稀有金属材料与工程, 2006, 35(1): 66–69. DOI: 10.3321/j.issn:1002-185X.2006.01.017.QIU K Q, REN Y L. Tungsten particulate reinforced Zr based bulk metallic glass composites [J]. Rare Metal Materials and Engineering, 2006, 35(1): 66–69. DOI: 10.3321/j.issn:1002-185X.2006.01.017. [10] 杨旭, 雷济旭, 路庆伟, 等. 钨粉/锆基非晶复合材料制备工艺研究 [J]. 天津冶金, 2016(5): 30–33. DOI: 10.3969/j.issn.1006-110X.2016.05.009.YANG X, LEI J X, LU Q W, et al. Study on preparation process of tungsten powder/zirconium based amorphous composite [J]. Tianjin Metallurgy, 2016(5): 30–33. DOI: 10.3969/j.issn.1006-110X.2016.05.009. [11] 张云峰, 罗兴柏, 施冬梅, 等. W骨架/Zr基非晶合金复合材料细观胞元重构 [J]. 稀有金属材料与工程, 2019, 48(1): 137–142.ZHANG Y F, LUO X B, SHI D M, et al. Reconstruction of meso-cells of Zr-based metallic glass reinforced porous W matrix composite [J]. Rare Metal Materials and Engineering, 2019, 48(1): 137–142. [12] 黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014: 111−118. [13] 辛甜, 韩庆. 钢破片侵彻靶板弹道极限速度研究 [J]. 科学技术与工程, 2012, 12(2): 264–268. DOI: 10.3969/j.issn.1671-1815.2012.02.004.XIN T, HAN Q. Research on ballistic limit velocity of steel fragments penetrating target [J]. Science Technology and Engineering, 2012, 12(2): 264–268. DOI: 10.3969/j.issn.1671-1815.2012.02.004. [14] 李向东, 杜忠华. 目标易损性[M]. 北京: 北京理工大学出版社, 2013: 104−105.