W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究

张玉令 施冬梅 张云峰 刘国庆 甄建伟

张玉令, 施冬梅, 张云峰, 刘国庆, 甄建伟. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究[J]. 爆炸与冲击, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063
引用本文: 张玉令, 施冬梅, 张云峰, 刘国庆, 甄建伟. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究[J]. 爆炸与冲击, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063
ZHANG Yuling, SHI Dongmei, ZHANG Yunfeng, LIU Guoqing, ZHEN Jianwei. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments[J]. Explosion And Shock Waves, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063
Citation: ZHANG Yuling, SHI Dongmei, ZHANG Yunfeng, LIU Guoqing, ZHEN Jianwei. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments[J]. Explosion And Shock Waves, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063

W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究

doi: 10.11883/bzycj-2020-0063
基金项目: “十三五”装备预研基金(00405030107)
详细信息
    作者简介:

    张玉令(1983- ),男,博士,讲师,zhangyuling2009@163.com

    通讯作者:

    张云峰(1990- ),男,博士研究生,1193954881@qq.com

  • 中图分类号: O385; TJ413.2

Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments

  • 摘要: 将W骨架/Zr基非晶合金复合材料破片装入弹体制备成预制破片弹丸,并进行实爆试验,研究W骨架/Zr基非晶合金复合材料预制破片侵彻靶板的能力,以及预制破片贯穿靶板后对棉被、油箱的引燃能力。结果表明:制备的W骨架/Zr基非晶合金复合材料密度大、强度高,爆炸完整性和侵彻能力能够满足作为榴弹预制破片的要求;W骨架/Zr基非晶合金复合材料破片侵彻过程中自身变形是影响侵彻能力的主要原因之一;W骨架/Zr基非晶合金复合材料预制破片侵彻和贯穿靶板的过程中伴随着强烈的爆轰,当穿透率足够高时,预制破片的爆轰作用能够引燃靶后的棉被和油箱。
  • 图  1  试验现场布置

    Figure  1.  Test layout

    图  2  W骨架/Zr基非晶合金复合材料预制破片

    Figure  2.  Zr-based metallic glass reinforced porous W matrix composite fragments

    图  3  预制破片布置方式

    Figure  3.  Arrangement of preformed fragments

    图  4  棉被布置

    Figure  4.  Quilt layout

    图  5  油箱布置

    Figure  5.  Oil tank layout

    图  6  高速摄像机布设场景

    Figure  6.  High-speed camera layout

    图  7  高速摄影

    Figure  7.  High-speed photography

    图  8  棉被和油箱被引燃

    Figure  8.  Ignited quilt and fuel tank

    图  9  被破片侵彻后的油箱

    Figure  9.  Oil tank penetrated by fragments

    图  10  侵彻破片变形情况

    Figure  10.  Fragment deformation

    表  1  非晶合金复合材料破片侵彻能力及后效情况

    Table  1.   Penetration ability and aftereffect of metallic glass composite fragments

    靶板编号b/mmRt/m第一次棉被引燃试验第二次棉被引燃试验第一次油箱引燃试验
    nnny是否燃烧 nnny是否燃烧 nnny是否燃烧
    110 310 09032
    285551012
    385505330
    467404020
    567522146
    667712 3144
    7410 005531
    8410 44213 61
    9410 211210
    10 410 001120
     注:b为靶板厚度,Rt为靶板与炸点间的距离,ny为穿透靶板的破片个数,nn为未穿透靶板的破片个数.
    下载: 导出CSV

    表  2  第二次油箱引燃试验非晶合金复合材料破片侵彻能力及后效情况

    Table  2.   Penetration ability and aftereffect of metallic glass composite fragments in the second fuel tank pilot test

    靶板编号b/mmRt/mnnny是否燃烧
    18312 0
    26515 6
    36529
    46753
    56790
    66710 0
    7610 20
    8610 50
    9610 11
    10 610 10
    下载: 导出CSV

    表  3  破片飞行速度

    Table  3.   Fragment speed

    距爆心距离/m速度/(m·s−1误差
    实测值计算值
    31 135.135
    51 044.7761 105.9790.058 6
    71 042.5501 077.5720.033 6
    10 979.0211 036.3240.058 5
    下载: 导出CSV

    表  4  破片命中靶板不同位置的速度

    Table  4.   Velocities of fragments hitting different positions of the steel plate

    命中靶心情形命中四角情形速度误差
    R/mv/(m·s−1R/mv/(m·s−1
    31 135.135 3.132 51 133.1800.001 725
    51 044.776 5.080 61 043.6810.001 049
    71 042.550 7.057 81 041.7660.000 752
    10 979.02110.040 5 978.5050.000 528
    下载: 导出CSV

    表  5  三次试验非晶合金复合材料破片侵彻能力汇总分析表

    Table  5.   Summary and analysis of penetration ability of metallic glass composite fragments in three tests

    序号Rt/mb/mmNnnnynPth
    1310 322 2240.083
    25862010300.333
    37693526610.426
    410 412 2728550.509
     注:N为靶板个数,n为破片总数,Pth为穿透率.
    下载: 导出CSV

    表  6  试验破片靶板穿透率理论计算结果

    Table  6.   Theoretical penetration ratios of fragments to target plates

    序号Rt/mb/mm式(4)结果式(5)结果式(6)结果
    bal/mmPth bal/mmPthbal/mmPth
    131012.660.988 4323.380.854 7311.610.992 99
    25810.130.991 6418.7 0.878 02 9.290.995 08
    376 7.590.998 7914.030.956 58 6.970.999 39
    4104 5.060.999 90 9.350.988 88 4.640.999 96
    下载: 导出CSV
  • [1] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.

    ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
    [2] 黄劲松, 刘咏, 陈仕奇, 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.

    HUANG J S, LIU Y, CHEN S Q, et al. Progress and application of Zr-based amorphous alloys [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.
    [3] 阮芳, 姚可夫. 高强度Zr基大块非晶合金的研究进展 [J]. 材料导报, 2005, 19(9): 8–11. DOI: 10.3321/j.issn:1005-023X.2005.09.003.

    RUAN F, YAO K F. Research progress of high strength Zr-based bulk amorphous alloys [J]. Materials Reports, 2005, 19(9): 8–11. DOI: 10.3321/j.issn:1005-023X.2005.09.003.
    [4] INOUE A, ZHANG T, MASUMOTO T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method [J]. Materials Transactions, JIM, 1990, 31(5): 425–428. DOI: 10.2320/matertrans1989.31.425.
    [5] ZHANG B, FU H M, SHA P F, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites [J]. Materials Science and Engineering: A, 2013, 566: 16–21. DOI: 10.1016/j.msea.2012.12.080.
    [6] 张海峰. 非晶复合材料制备与性能 [J]. 中国材料进展, 2010, 29(11): 8–15.

    ZHANG H F. Preparation and properties of amorphous composite materials [J]. Materials China, 2010, 29(11): 8–15.
    [7] CONNER R D, CHOI-YIM H, JOHNSON W L. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites [J]. Journal of Materials Research, 1999, 14(8): 3292–3297. DOI: 10.1557/JMR.1999.0445.
    [8] CHOI-YIM H, SCHROERS J, JOHNSON W L. Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites [J]. Applied Physics Letters, 2002, 80(11): 1906–1908. DOI: 10.1063/1.1459766.
    [9] 邱克强, 任英磊. 钨颗粒增强大块非晶复合材料 [J]. 稀有金属材料与工程, 2006, 35(1): 66–69. DOI: 10.3321/j.issn:1002-185X.2006.01.017.

    QIU K Q, REN Y L. Tungsten particulate reinforced Zr based bulk metallic glass composites [J]. Rare Metal Materials and Engineering, 2006, 35(1): 66–69. DOI: 10.3321/j.issn:1002-185X.2006.01.017.
    [10] 杨旭, 雷济旭, 路庆伟, 等. 钨粉/锆基非晶复合材料制备工艺研究 [J]. 天津冶金, 2016(5): 30–33. DOI: 10.3969/j.issn.1006-110X.2016.05.009.

    YANG X, LEI J X, LU Q W, et al. Study on preparation process of tungsten powder/zirconium based amorphous composite [J]. Tianjin Metallurgy, 2016(5): 30–33. DOI: 10.3969/j.issn.1006-110X.2016.05.009.
    [11] 张云峰, 罗兴柏, 施冬梅, 等. W骨架/Zr基非晶合金复合材料细观胞元重构 [J]. 稀有金属材料与工程, 2019, 48(1): 137–142.

    ZHANG Y F, LUO X B, SHI D M, et al. Reconstruction of meso-cells of Zr-based metallic glass reinforced porous W matrix composite [J]. Rare Metal Materials and Engineering, 2019, 48(1): 137–142.
    [12] 黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014: 111−118.
    [13] 辛甜, 韩庆. 钢破片侵彻靶板弹道极限速度研究 [J]. 科学技术与工程, 2012, 12(2): 264–268. DOI: 10.3969/j.issn.1671-1815.2012.02.004.

    XIN T, HAN Q. Research on ballistic limit velocity of steel fragments penetrating target [J]. Science Technology and Engineering, 2012, 12(2): 264–268. DOI: 10.3969/j.issn.1671-1815.2012.02.004.
    [14] 李向东, 杜忠华. 目标易损性[M]. 北京: 北京理工大学出版社, 2013: 104−105.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  302
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-13
  • 修回日期:  2020-12-17
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回