Experimental research on damaging characteristics of cabin model attacking from shipboard direction under close-in underwater explosion
-
摘要: 为探究舷侧近距离爆炸对水面舰船的毁伤效应,设计了大尺度舱段模型,并开展了舷侧近距离水下爆炸试验,试验后测量了舱段模型破坏范围及破坏模式、模型典型部位冲击环境数据、典型部位动态响应。综合对比可发现:(1)舷侧近距离水下爆炸下,在爆心区域可对舱段模型形成严重毁伤破坏,但毁伤范围有限,基本以局部破坏为主;(2)舷侧近距离水下爆炸下可形成较为明显的水射流载荷,主要是由气泡与非完整边界、自由面在耦合过程中形成的,与传统研究的气泡收缩失稳引起的水射流载荷形成机理存在一定的差异;(3)基于板格能量计算方法,建立了舷侧外近距离爆炸下舷侧爆炸破口计算公式,与试验结果吻合较好;(4)近距离爆炸下,舷侧外板的破坏模式与爆距存在较大的关系。本文的研究成果对舰船抗爆防护具有很强的指导意义。Abstract: In order to explore the damage and failure model of warship under close-in underwater explosion from shipboard direction attacting, a cabin model was designed and applied to close-in underwater explosion experiments. The results including demolishing regions of cabin model, shock environment data from typical positions, together with strain datas were acquired. It was indicated that: (1) Only the regions around the charge suffered serious damage, majorly characterized by the local damage model; (2) Water jetting phenomenon was found in this experiment, but the mechanism responsible for the formation of water jetting was quite different from traditional one induced by the bubble collapsing. The reasons may be due to the coupling interactions between bubble movement and incomplete boundary and free surface; (3) The crevasse calculation based on energy method was built. The calculated results were in good agreement with the experimental results; (4) The distance of charge had an important influence on the failure model of shipboard plate.
-
Key words:
- shipboard underwater explosion /
- close-in explosion /
- failure model /
- damage effect /
- shock environment
-
表 1 应变测点结果
Table 1. Results for strain measuring points
编号 应变峰值/10−6 塑性应变/10−6 编号 应变峰值/10−6 塑性应变/10−6 编号 应变峰值/10−6 塑性应变/10−6 E3-1-X 1216 323 E1-2-X 678 252 E01-5-X 861 33 E3-1-Y 202 9 E1-2-Y 246 28 E01-5-Y 257 25 E3-2-X 1538 401 E1-3-X 888 363 E02-1-X 387 0 E3-2-Y 212 88 E1-3-Y 582 195 E02-1-Y 253 0 E2-1-X 693 261 E1-4-X 4819 90 E02-2-X 330 0 E2-1-Y 231 29 E1-4-Y 4863 2512 E02-2-Y 1142 0 E2-2-X 530 213 E01-1-X 1300 107 EG-1-Y 576 352 E2-2-Y 404 29 E01-1-Y 288 191 EG-1-Z 615 180 E2-3-X 11354 10430 E01-2-X 1243 20 EG-2-Y 920 170 E2-3-Y 12484 1156 E01-2-Y 205 32 EG-2-Z 449 226 E2-4-Y 11926 10610 E01-3-X 1316 0 EG-3-Y 515 106 E2-5-Y 12680 10890 E01-3-Y 1776 200 EG-3-Z 390 81 E1-1-Y 321 50 E01-4-X 844 112 表 2 计算结果
Table 2. Calculated results
板格 作用能量Ei/kJ 极限吸能Ej/kJ 板格破坏状态 A1 105 13 坏 A2 33 13 坏 A3 10 13 接近坏 A4 7 13 不坏 B1 771 13 坏 B2 64 13 坏 B3 14 13 坏 B4 5 13 不坏 -
[1] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究 [J]. 爆炸与冲击, 2004, 24(2): 133–139.ZHU X, ZHANG Z H, LIU R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2004, 24(2): 133–139. [2] 唐廷, 朱锡, 侯海量, 等. 大型水面舰艇防雷舱结构防护机理数值仿真 [J]. 哈尔滨工程大学学报, 2012, 33(2): 142–149.TANG T, ZHU X, HOU H L, et al. Numerical Simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels [J]. Journal of Harbin Engineering University, 2012, 33(2): 142–149. [3] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性 [J]. 爆炸与冲击, 2017, 37(4): 719–726. DOI: 10.11883/1001-1455(2017)04-0719-08.WU L J, HOU H L, ZHU X, et al. Internal load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2017, 37(4): 719–726. DOI: 10.11883/1001-1455(2017)04-0719-08. [4] 张伦平, 张晓阳, 刘建湖, 等. 多舱防护结构水下接触爆炸吸能研究 [J]. 船舶力学, 2011, 15(8): 921–929. DOI: 10.3969/j.issn.1007-7294.2011.08.013.ZHANG L P, ZHANG X Y, LIU J H, et al. Energy research about multicamerate defence structure subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2011, 15(8): 921–929. DOI: 10.3969/j.issn.1007-7294.2011.08.013. [5] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2. [6] WIERZBICKI T. Petalling of plates under explosive and impact loading [J]. International Journal of Impact Engineering, 1999, 22(9-10): 935–954. DOI: 10.1016/S0734-743X(99)00028-7. [7] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8. [8] 陈娟, 吴国民. 船底双层板架结构水下近场爆炸试验 [J]. 中国舰船研究, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571.CHEN J, WU G M. Underwater near-field explosion experiment of double-wall bottom grillage [J]. Chinese Journal of Ship Research, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571. [9] 杨棣, 姚熊亮, 张玮, 等. 水下近场及接触爆炸作用下双层底结构损伤试验研究 [J]. 振动与冲击, 2015, 34(5): 161–165; 186. DOI: 10.13465/j.cnki.jvs.2015.02.028.YANG D, YAO X L, ZHANG W, et al. Experimental on double bottom’s structural damage under underwater near-field and contact explosions [J]. Journal of Vibration and Shock, 2015, 34(5): 161–165; 186. DOI: 10.13465/j.cnki.jvs.2015.02.028. [10] 姚熊亮, 刘文韬, 张阿漫, 等. 水下爆炸气泡及其对结构毁伤研究综述 [J]. 中国舰船研究, 2016, 11(1): 36–45. DOI: 10.3969/j.issn.1673-3185.2016.01.006.YAO X L, LIU W T, ZHANG A M, et al. Review of the research on underwater explosion bubbles and the corresponding structural damage [J]. Chinese Journal of Ship Research, 2016, 11(1): 36–45. DOI: 10.3969/j.issn.1673-3185.2016.01.006. [11] 张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2006. [12] BRETT J M, YIANNAKOPOLOUS G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225. DOI: 10.1016/j.ijimpeng.2007.01.007. [13] HUNG C F, HWANGFU J J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55–80. DOI: 10.1017/S0022112009993776. [14] MENON S, LAL M. On the dynamics and instability of bubbles formed during underwater explosions [J]. Experimental Thermal and Fluid Science, 1998, 16(4): 305–321. DOI: 10.1016/S0894-1777(97)10038-3. [15] 王海坤. 水下爆炸下水面舰船结构局部与总体耦合损伤研究[D]. 北京: 中国舰船研究院, 2018. [16] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验 [J]. 中国造船, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion [J]. Ship Building of China, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.