Damaging characteristics of a cabin model under close-in underwater explosion from bottom attacting
-
摘要: 底部近距离爆炸可对水面舰船造成致命性打击,为探究其破坏机理,本文中开展了底部近距离爆炸下舱段模型的毁伤试验,获取了舱段模型破损区域试验数据、非破损区域的冲击环境数据。同时借助舷侧近距离爆炸试验结果、底部中远场爆炸试验结果,综合对比可发现:(1)底部近距离爆炸下,舱段模型会呈现整体隆起变形、爆心区域撕裂并伴有较大凹陷变形、舷侧外板大面积屈曲失稳等典型特征;(2)相比舷侧爆炸方位,底部爆炸对舱段模型具有很强的综合毁伤效果,底部爆炸相对舷侧爆炸对舱段模型的综合毁伤效果可提高40%以上;(3)在冲击环境方面,底部近距离爆炸下非破损区域测点中高频段的冲击谱曲线变化趋势基本与中远场爆炸一致,但在低频阶段,底部近距离爆炸下的谱位移要远高于中远场爆炸工况。Abstract: Experiment of cabin model subjected to close-in underwater explosion from bottom attacting was investigated to explore the damage failure model of warship, The demolishing region datas of cabin model together with shock environment information were obtained. Furthermore, by contrasting the experimental results from the case of close-in underwater explosion from ship broadside attacting and far-mild field shock environment trial. It is concluded that: (1) the typical failure of cabin model mainly contains the whole deformation, tearing in the middle along with local dish on both sides; (2) the bottom attacting method has more destruction ability in contrast to the ship broadside attacting way, it is found more than 40% damage effect can be increased according to the experimental results; (3) the variation tendency of measuring point shock spectra between close-in and far-mild field bottom underwater explosion at middle and high frequency level, Unfortunately, for the low frequency level the values of close-in underwater explosion are greater than the latter.
-
Key words:
- bottom underwater explosion /
- failure model /
- damage effect /
- shock environment
-
表 1 试验工况表
Table 1. Experimental cases
工况 爆炸方位 药量/kg 爆距/m 爆点位置 备注 1 底部 2.0 0.18 垂向水线下方1.18 m,横向位于船舯 主要试验 2 底部 1.0 6.66 垂向水线下方7.66 m,横向位于船舯 冲击环境对比试验(冲击因子0.15、0.25) 3 底部 1.0 4.00 垂向水线下方5.0 m,横向位于船舯 4 舷侧 2.8 0.18 垂向水线下方0.44 m,横向距离舷侧0.125 m 毁伤对比试验 -
[1] 刘建湖. 水下接触爆炸载荷与结构相互作用研究[C] // 第十二届全国爆炸力学学术会议. 桐乡, 2018. [2] 周章涛,刘建湖,裴红波,等 . 水下近距和接触爆炸流固耦合作用机理及加载效应研究 [J]. 兵工学报, 2017, 38(1): 95–104. DOI: 1000-1093(2017)S1-0136-10.ZHOU Z T, LIU J H, PEI H B, et al. Fluid structure interaction mechanism and loading effect in close in and contact underwater explosions [J]. Acta Armamentari, 2017, 38(1): 95–104. DOI: 1000-1093(2017)S1-0136-10. [3] 朱锡,白雪飞,黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验 [J]. 中国造船, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion [J]. Ship Building of China, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007. [4] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads: an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2. [5] WIERZBICKI T. Petalling of plates under explosive and impact loading [J]. International Journal of Impact Engineering, 1999, 22(9/10): 935–954. DOI: org/10.1016/S0734-743X(99)00028-7. [6] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8. [7] YU Z L, HU Z Q, AMDAHL J, et al. Investigation on structural performance predictions of double-bottom tankers during shoalgrounding accidents [J]. Marine Structures, 2013, 33: 188–213. DOI: 10.1016/j.marstruc.2013.06.003. [8] 陈娟,吴国民. 船底双层板架结构水下近场爆炸试验 [J]. 中国舰船研究, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571.CHEN J, WU G M. Underwater near-field explosion experiment of double-wall bottom grillage [J]. Chinese Journal of Ship Research, 2019, 14(S1): 143–150. DOI: 10.19693/j.issn.1673-3185.01571. [9] 王超, 岳永威, 王奂钧. 水面舰船双层结构水下抗爆特性数值模拟 [J]. 中国舰船研究, 2013, 8(1): 39–46. DOI: 10.3969/j.issn.1673-3185.2013.01.007.WANG C, YUE Y W, WANG H J. Numerical simulation on anti-shock performance of double structure of surface warship subjected to underwater contact explosion [J]. Chinese Journal of Ship Research, 2013, 8(1): 39–46. DOI: 10.3969/j.issn.1673-3185.2013.01.007. [10] 杨棣, 姚熊亮, 张玮, 等. 水下近场及接触爆炸作用下双层底结构损伤试验研究 [J]. 振动与冲击, 2015, 34(5): 161–186. DOI: 10.13465/j.cnki.jvs.2015.02.028.YANG L, YAO X L, ZHANG W, et al. Experimental on double bottom’s structural damage under water near-field and contact explosions [J]. Journal of Vibration and Shock, 2015, 34(5): 161–186. DOI: 10.13465/j.cnki.jvs.2015.02.028. [11] 吴庭翱, 张弩, 侯海量, 等. 水下接触爆炸下多舱防护结构载荷特性及动响应研究进展 [J]. 中国舰船研究, 2018, 13(3): 1–12. DOI: 10.19693/j.issn.1673-3185.01051.WU T A, ZHANG N, HOU H L, et al. Research progress on load characteristics and dynamic response of multicamerate defense structure subjected to contact underwater explosion [J]. Chinese Journal of Ship Research, 2018, 13(3): 1–12. DOI: 10.19693/j.issn.1673-3185.01051. [12] 姚熊亮, 刘文韬, 张阿漫, 等. 水下爆炸气泡及其对结构毁伤研究综述 [J]. 中国舰船研究, 2016, 11(1): 36–45. DOI: 10.3969/j.issn.1673-3185.2016.01.006.YAO X L, LIU W T, ZHANG A M, et al. Review of the research on underwater explosion bubbles an the corresponding structural damaging [J]. Chinese Journal of Ship Research, 2016, 11(1): 36–45. DOI: 10.3969/j.issn.1673-3185.2016.01.006.