穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型

刘赛 张伟贵 吕振华

刘赛, 张伟贵, 吕振华. 穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型[J]. 爆炸与冲击, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
引用本文: 刘赛, 张伟贵, 吕振华. 穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型[J]. 爆炸与冲击, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
LIU Sai, ZHANG Weigui, LYU Zhenhua. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors[J]. Explosion And Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
Citation: LIU Sai, ZHANG Weigui, LYU Zhenhua. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors[J]. Explosion And Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069

穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型

doi: 10.11883/bzycj-2020-0069
详细信息
    作者简介:

    刘 赛(1988- ),男,博士,工程师,lsliusai@163.com

    通讯作者:

    吕振华(1961- ),男,博士,教授,lvzh@tsinghua.edu.cn

  • 中图分类号: O385

An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors

  • 摘要: 为了提高小口径穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲(透明装甲)的仿真分析精度,本文将传统的FEM(finite element method)-SPH(smooth particle hydrodynamics)耦合计算模型中穿甲燃烧弹弹芯的有限元模型和JC(Johnson-Cook)材料模型分别替换为SPH模型和JH2(Johnson-Holmquist-ceramics)材料模型,提出了新型FEM-SPH耦合计算模型。研究表明,新型FEM-SPH耦合计算模型可以有效模拟弹芯碎裂现象,减少SPH粒子和有限元耦合计算量,进而显著提高仿真模型的计算精度和计算效率,并给出了新型FEM-SPH耦合计算模型的有限元/粒子尺度和建模尺寸的优选结果。
  • 图  1  侵彻后收集到的穿甲燃烧弹扭曲变形的被甲和脆性碎裂的弹芯[5]

    Figure  1.  Twisted jackets and comminuted cores of armor piercing bullets after penetration[5]

    图  2  穿甲燃烧弹的FEM-SPH耦合计算模型和陶瓷板的SPH模型

    Figure  2.  The FEM-SPH model of an armor piercing bullet and the SPH model of a ceramic plate

    图  3  方案1和方案2的新型FEM-SPH耦合计算模型

    Figure  3.  The new FEM-SPH model of structure 1 and structure 2

    图  4  方案1和方案2的数值模拟结果

    Figure  4.  Simulation results of structure 1 and structure 2

    图  5  陶瓷板和弹芯的等效塑性应变云图

    Figure  5.  Effective-plastic-strain contours of ceramic plates and bullet cores

    图  6  方案1的有限元计算模型和传统FEM-SPH耦合计算模型

    Figure  6.  The FEM model and traditional FEM-SPH model of structure 1

    图  7  方案1的有限元模型和传统FEM-SPH耦合模型的仿真计算结果

    Figure  7.  Simulation results of structure 1 by FEM and traditional FEM-SPH models

    图  8  采用有限元模型和传统FEM-SPH耦合模型得到的中心陶瓷和弹芯的等效塑性应变云图

    Figure  8.  Effective-plastic-strain contours of center ceramics and bullet cores simulated by FEM and traditional FEM-SPH models

    图  9  有限元模型和传统FEM-SPH耦合模型的陶瓷板的等效塑性应变云图

    Figure  9.  Effective-plastic-strain contours of ceramic plates of FEM model and traditional FEM-SPH model

    图  10  陶瓷块间距对弹道极限速度计算值的影响

    Figure  10.  Influence of ceramic spacing to computed ballistic limit velocity

    图  11  透明装甲的新型FEM-SPH耦合计算模型

    Figure  11.  The new FEM-SPH model of the transparent armor

    图  12  新型FEM-SPH耦合计算模型的仿真计算结果剖视图

    Figure  12.  Cutaway view of simulation result by the new FEM-SPH model

    图  13  无机玻璃的等效塑性应变云图

    Figure  13.  Effective-plastic–strain contours of glasses

    图  14  透明装甲的有限元计算模型和传统FEM-SPH耦合计算模型

    Figure  14.  The FEM and traditional FEM-SPH models for the transparent armor

    图  15  透明装甲的有限元模型和传统FEM-SPH耦合模型的仿真计算结果

    Figure  15.  Simulated results of the transparent armor by the FEM and traditional FEM-SPH models

    图  16  采用有限元模型得到的无机玻璃的等效塑性应变云图

    Figure  16.  Simulated effective-plastic-strain contours of glasses by the FEM model

    图  17  采用传统FEM-SPH耦合模型得到的无机玻璃的等效塑性应变云图

    Figure  17.  Simulated effective-plastic-strain contours of glasses by the traditional FEM-SPH model

    表  1  陶瓷复合装甲组成

    Table  1.   Composition of ceramic composite armors

    装甲方案组分(面板到背板)各组分厚度/mm
    1G/A陶瓷/G/K/G1.2/X/1.2/10/2
    2G/B陶瓷/G/K/G1.2/X/1.2/10/2
    下载: 导出CSV

    表  2  陶瓷复合装甲的新型FEM-SPH耦合计算模型的建模方式和材料模型

    Table  2.   Modeling methods and material models for the new FEM-SPH model of ceramic composite armors

    部件建模方式平均尺度/mm材料模型
    弹芯SPH0.5JH2 (Johnson-Holmquist-ceramics)模型
    陶瓷0.5~1.0
    铅套FEM0.2~2.0JC (Johnson-Cook)模型
    被甲
    玻纤板0.5~8.0正交各向异性连续损伤本构模型
    Kevlar纤维板
    下载: 导出CSV

    表  3  穿甲燃烧弹弹芯的JH2材料模型主要参数

    Table  3.   Material constants for the JH2 model of an armor-piercing-bullet core

    ABCMND1D2$T{\rm{/GPa}}$${P_{{\rm{Hel}}}}{\rm{/GPa}}$${\sigma _{{\rm{Hel}}}}{\rm{/GPa}}$
    0.20.0140.005000.1530202014.0
    下载: 导出CSV

    表  4  方案1采用不同计算模型得到的弹道极限速度以及计算所用的时间

    Table  4.   Ballistic limit velocities of structure 1 by different computational models and the corresponding time used for computation

    计算模型FEMOFSNFSNFSANFSBNFSCNFSD
    弹道极限速度计算值0.5980.6360.9700.5460.9960.8551.003
    计算时间0.2245.5821.0000.5222.2840.4931.746
    下载: 导出CSV

    表  5  透明装甲组成

    Table  5.   Composition of the transparent armor

    组分(面板到背板)GPUGPUGPUPC
    厚度/mm1011011016
    下载: 导出CSV

    表  6  透明装甲的新型FEM-SPH耦合计算模型的建模方式和材料模型

    Table  6.   Modeling methods and material models for the new FEM-SPH model of the transparent armor

    部件建模方式平均尺度/mm材料模型
    弹芯SPH0.5JH2 (Johnson-Holmquist-ceramics)模型
    无机玻璃0.6
    铅套FEM0.2~2.0JC (Johnson-Cook)模型
    被甲
    聚氨酯0.6弹塑性材料模型
    聚碳酸酯
    下载: 导出CSV

    表  7  透明装甲采用不同计算模型得到的弹道极限速度以及计算所用的时间

    Table  7.   Ballistic limit velocities of the transparent armor by different computational models and the corresponding time used for computation

    计算模型FEMOFSNFSNFSANFSBNFSCNFSD
    弹道极限速度计算值0.7110.8650.9500.8990.9160.8130.967
    计算时间0.1715.3841.0000.2538.6370.2333.178
    下载: 导出CSV
  • [1] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
    [2] 陈斌, 罗夕容, 曾首义. 穿甲子弹侵彻陶瓷/钢靶板的数值模拟研究 [J]. 弹道学报, 2009, 21(1): 14–18.

    CHEN B, LUO X R, ZENG S Y. Simulation study on ceramic/mild steel targets penetrated by APP [J]. Journal of Ballistics, 2009, 21(1): 14–18.
    [3] 卿尚波, 晏麓晖, 曾首义. 陶瓷靶的多片组合效应分析 [J]. 弹箭与制导学报, 2010, 30(3): 72–74. DOI: 10.15892/j.cnki.djzdxb.2010.03.019.

    QING S B, YAN L H, ZENG S Y. Studies on combinational effect of multi-ceramics [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3): 72–74. DOI: 10.15892/j.cnki.djzdxb.2010.03.019.
    [4] 孙素杰, 赵宝荣, 王军, 等. 不同背板对陶瓷复合装甲抗弹性能影响的研究 [J]. 兵器材料科学与工程, 2006, 29(2): 70–72. DOI: 10.3969/j.issn.1004-244X.2006.02.019.

    SUN S J, ZHAO B R, WANG J, et al. Study on the penetration performance of ceramic armors with different backing plate [J]. Ordnance Material Science and Engineering, 2006, 29(2): 70–72. DOI: 10.3969/j.issn.1004-244X.2006.02.019.
    [5] 蒋志刚, 申志强, 曾首义, 等. 穿甲子弹侵彻陶瓷/钢复合靶板试验研究 [J]. 弹道学报, 2007, 19(4): 38–42. DOI: 10.3969/j.issn.1004-499X.2007.04.011.

    JIANG Z G, SHEN Z Q, ZENG S Y, et al. An experimental study on ceramic/mild steel targets against APP [J]. Journal of Ballistics, 2007, 19(4): 38–42. DOI: 10.3969/j.issn.1004-499X.2007.04.011.
    [6] JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
    [7] BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
    [8] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C] // Proceedings of the 4th European LS-DYNA User Conference. Stuttgart, Germany: DY-NAmore GmbH, 2003: 47−60.
    [9] 谢恒, 吕振华. 破片侵彻纤维复合材料板的有限元数值模拟 [J]. 清华大学学报(自然科学版), 2012, 52(1): 96–101. DOI: 10.16511/j.cnki.qhdxxb.2012.01.005.

    XIE H, LÜ Z H. Finite element simulation of FRP plates impacted by fragments [J]. Journal of Tsinghua University (Science and Technology), 2012, 52(1): 96–101. DOI: 10.16511/j.cnki.qhdxxb.2012.01.005.
    [10] XIAO J R, GAMA B A, GILLESPIE Jr J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. DOI: 10.1016/j.compstruct.2005.09.001.
    [11] 王元博. 纤维增强层合材料的抗弹性能和破坏机理研究[D]. 合肥: 中国科学技术大学, 2006: 87−89. DOI: 10.7666/d.y918786.
    [12] 陈宇宏, 厉蕾. 轻型防弹玻璃的结构研究 [J]. 材料工程, 2002(6): 7–9; 36. DOI: 10.3969/j.issn.1001-4381.2002.06.002.

    CHEN Y H, LI L. Study on the structure of lightweight bulletproof glass [J]. Journal of Materials Engineering, 2002(6): 7–9; 36. DOI: 10.3969/j.issn.1001-4381.2002.06.002.
    [13] HOLMQUIST T J, JOHNSON G R, GRADY D E, et al. High strain rate properties and constitutive modeling of glass [C] // Proceedings of the 15th International Symposium on Ballistics. Jerusalem, Israel, 1995: 237−244.DOI: 10.2172/41367.
    [14] LI Z H, LAMBROS J. Strain rate effects on the thermomechanical behavior of polymers [J]. International Journal of Solids and Structures, 2001, 38(20): 3549–3562. DOI: 10.1016/s0020-7683(00)00223-7.
    [15] TI Y, CHEN D J. Mechanical and dynamic mechanical properties of polyurethane/Fe-octacarboxyl acid phthalocyanine blends [J]. Progress in Organic Coatings, 2013, 76(1): 119–124. DOI: 10.1016/j.porgcoat.2012.08.019.
    [16] 曹侃, 汪洋, 王宇. 低温下聚碳酸酯冲击拉伸性能的实验研究 [J]. 兵工学报, 2010, 31(S1): 195–198.

    CAO K, WANG Y, WANG Y. Experimental study on impact tensile properties of polycarbonate at low temperature [J]. Acta Armamentarii, 2010, 31(S1): 195–198.
    [17] 张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型 [J]. 爆炸与冲击, 2015, 35(1): 51–56. DOI: 10.11883/1001-1455(2015)01-0051-06.

    ZHANG L H, ZHANG X Q, YAO X H, et al. Constitutive model of transparent aviation polyurethane at high strain rates [J]. Explosion and Shock Waves, 2015, 35(1): 51–56. DOI: 10.11883/1001-1455(2015)01-0051-06.
    [18] 姚小虎, 张龙辉, 张晓晴, 等. 航空透明聚氨酯胶片动态力学性能实验研究 [J]. 航空学报, 2015, 36(7): 2236–2243. DOI: 10.7527/S1000-6893.2014.0281.

    YAO X H, ZHANG L H, ZHANG X Q, et al. Experimental study on dynamic mechanical behavior of aerospace- transparent polyurethane interlayer [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2236–2243. DOI: 10.7527/S1000-6893.2014.0281.
    [19] 胡文军, 张方举, 田常津, 等. 聚碳酸酯的动态应力应变响应和屈服行为 [J]. 材料研究学报, 2007, 21(4): 439–443. DOI: 10.3321/j.issn: 1005-3093.2007.04.019.

    HU W J, ZHANG F J, TIAN C J, et al. Dynamic stress-strain response and yield behavior of polycarbonate [J]. Chinese Journal of Materials Research, 2007, 21(4): 439–443. DOI: 10.3321/j.issn: 1005-3093.2007.04.019.
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  1052
  • HTML全文浏览量:  573
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 修回日期:  2020-07-10
  • 刊出日期:  2021-01-05

目录

    /

    返回文章
    返回