Damage mechanism of typical stiffened aircraft structures under explosive loading
-
摘要: 为了探讨爆炸载荷下飞机典型加筋结构的响应规律,开展了爆炸实验,获得了飞机典型结构表面的反射超压历程,加筋结构的应变、位移等结构响应数据。并结合实验结果建立了高置信度的有限元模型,研究了所选结构的变形分布规律和塑性毁伤特性。结果表明,对于本文中选取的飞机加筋结构,塑性变形除了会开始于常见的加强筋中点外,还会开始于加强筋与加强筋联结处、加强筋与外框联结处。这主要是受加筋板的双向拉伸变形和应力集中的影响。进一步总结了随冲击波正压时间增长,能够引发加筋结构塑性变形的有效冲量和反射超压峰值阈值。研究结果对飞机气动外形、抗爆能力设计具有重要意义。Abstract: Explosion experiments were performed to explore the response law of typical stiffened skin structures of aircrafts under explosive loading. And in the experiments, the following data on the structural responses were obtained as the reflected overpressure history at the surface of the typical aircraft structure, the strain and displacement of the stiffened structure. By combining the experimental data, a finite element model at a high-confidence level was proposed to analyze the deformation distribution and plastical damage characteristics of the structure investigated in this paper. Results show that for the stiffened structure investigated in this paper, the plastical deformation can start commonly at the midpoints of stiffeners, stiffener-to-stiffener and stiffener-to-outer frame joints in addition. It is mainly due to biaxial tensile deformation and stress concentration in stiffeners. Furthermore, the effective impulse and the peak threshold of reflected overpressure which can cause plastic deformation of reinforced structures with the increase of positive pressure action time were summarized. The research results are of great significance in the aerodynamic design of an aircraft.
-
Key words:
- aircraft /
- stiffened structure /
- plastic deformation /
- contact surface explosion /
- damage /
- explosive loading
-
表 1 试件各结构件的厚度
Table 1. Thicknesses of different structural parts of the specimen
结构部位 厚度/mm 蒙皮 1.5 外框 1.2 横向加强筋 1.2 纵向加强筋 1.5 -
[1] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading: a review: Part Ⅰ: theoretical considerations [J]. International Journal of Impact Engineering, 1989, 8(2): 159–170. DOI: 10.1016/0734-743X(89)90014-6. [2] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading: a review: Part Ⅱ: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8. [3] 焦立启, 侯海量, 陈鹏宇, 等. 爆炸冲击载荷下固支单向加筋板的动响应及破损特性研究 [J]. 兵工学报, 2019, 40(3): 592–600. DOI: 10.3969/j.issn.1000-1093.2019.03.019.JIAO L Q, HOU H L, CHEN P Y, et al. Research on dynamic response and damage characteristics of fixed supported one-way stiffened plates under blast loading [J]. Acta Armamentarii, 2019, 40(3): 592–600. DOI: 10.3969/j.issn.1000-1093.2019.03.019. [4] MCDONALD B, BORNSTEIN H, LANGDON G S, et al. Experimental response of high strength steels to localised blast loading [J]. International Journal of Impact Engineering, 2018, 115: 106–119. DOI: 10.1016/j.ijimpeng.2018.01.012. [5] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08. [6] 刘敬喜, 刘尧, 汤皓泉, 等. 爆炸载荷作用下单向加筋方板的大挠度塑性动力响应分析 [J]. 振动与冲击, 2011, 30(4): 182–187. DOI: 10.13465/j.cnki.jvs.2011.04.007.LIU J X, LIU Y, TANG H Q, et al. The large deflection dynamic plastic response analysis of one way stiffened square plates subjected to blast loads [J]. Journal of Vibration and Shock, 2011, 30(4): 182–187. DOI: 10.13465/j.cnki.jvs.2011.04.007. [7] NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates [J]. International Journal of Impact Engineering, 1995, 16(2): 273–291. DOI: 10.1016/0734-743X(94)00046-Y. [8] 朱锡, 牟金磊, 王恒, 等. 水下爆炸载荷作用下加筋板的毁伤模式 [J]. 爆炸与冲击, 2010, 30(3): 225–231. DOI: 10.11883/1001-1455(2010)03-0225-07.ZHU X, MU J L, WANG H, et al. Damage modes of stiffened plates subjected to underwater explosion load [J]. Explosion and Shock Waves, 2010, 30(3): 225–231. DOI: 10.11883/1001-1455(2010)03-0225-07. [9] RUDRAPATNA N S, VAZIRI R, OLSON M D. Deformation and failure of blast-loaded stiffened plates [J]. International Journal of Impact Engineering, 2000, 24(5): 457–474. DOI: 10.1016/S0734-743X(99)00172-4. [10] YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates: Part Ⅰ: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. DOI: 10.1016/j.ijimpeng.2003.09.048. [11] LANGDON G S, YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates: Part Ⅱ: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. DOI: 10.1016/j.ijimpeng.2003.09.050. [12] 吴林杰, 朱锡, 侯海量, 等. 空中近距爆炸下加筋板架的毁伤模式仿真研究 [J]. 振动与冲击, 2013, 32(14): 77–81, 126. DOI: 10.3969/j.issn.1000-3835.2013.14.013.WU L J, ZHU X, HOU H L, et al. Simulations for damage modes of a stiffened plate subjected to close-range air-blast loading [J]. Journal of Vibration and Shock, 2013, 32(14): 77–81, 126. DOI: 10.3969/j.issn.1000-3835.2013.14.013. [13] YUEN S C K, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load: Part Ⅲ: an update 25 years on [J]. International Journal of Impact Engineering, 2016, 107: 108–117. DOI: 10.1016/j.ijimpeng.2016.06.010. [14] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer, 1985: 119−136. [15] 杨军, 李焰, 张德志, 等. 光子多普勒测速仪与压杆相结合的冲击波反射压力测试技术 [J]. 兵工学报, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.YANG J, LI Y, ZHANG D Z, et al. Measuring technique of reflected blast wave pressure based on pressure bar and photonic Doppler velocimeter [J]. Acta Armamentarii, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015. [16] 宁建国, 王成, 马天宝. 爆炸与冲击动力学 [M]. 北京: 国防工业出版社, 2010: 113−119. [17] 张德志. 柱形爆炸容器载荷与塑形结构响应研究[D]. 西安: 西北核技术研究所, 2012.