爆炸载荷下飞机典型加筋结构毁伤特性

程帅 刘文祥 童念雪 殷文骏 师莹菊 张德志

程帅, 刘文祥, 童念雪, 殷文骏, 师莹菊, 张德志. 爆炸载荷下飞机典型加筋结构毁伤特性[J]. 爆炸与冲击, 2021, 41(1): 013302. doi: 10.11883/bzycj-2020-0077
引用本文: 程帅, 刘文祥, 童念雪, 殷文骏, 师莹菊, 张德志. 爆炸载荷下飞机典型加筋结构毁伤特性[J]. 爆炸与冲击, 2021, 41(1): 013302. doi: 10.11883/bzycj-2020-0077
CHENG Shuai, LIU Wenxiang, TONG Nianxue, YIN Wenjun, SHI Yingju, ZHANG Dezhi. Damage mechanism of typical stiffened aircraft structures under explosive loading[J]. Explosion And Shock Waves, 2021, 41(1): 013302. doi: 10.11883/bzycj-2020-0077
Citation: CHENG Shuai, LIU Wenxiang, TONG Nianxue, YIN Wenjun, SHI Yingju, ZHANG Dezhi. Damage mechanism of typical stiffened aircraft structures under explosive loading[J]. Explosion And Shock Waves, 2021, 41(1): 013302. doi: 10.11883/bzycj-2020-0077

爆炸载荷下飞机典型加筋结构毁伤特性

doi: 10.11883/bzycj-2020-0077
详细信息
    作者简介:

    程 帅(1988- ),男,博士研究生,助理研究员,chengshuai@nint.ac.cn

    通讯作者:

    张德志(1973- ),男,博士,研究员,zhangdezhi@nint.ac.cn

  • 中图分类号: O383.3

Damage mechanism of typical stiffened aircraft structures under explosive loading

  • 摘要: 为了探讨爆炸载荷下飞机典型加筋结构的响应规律,开展了爆炸实验,获得了飞机典型结构表面的反射超压历程,加筋结构的应变、位移等结构响应数据。并结合实验结果建立了高置信度的有限元模型,研究了所选结构的变形分布规律和塑性毁伤特性。结果表明,对于本文中选取的飞机加筋结构,塑性变形除了会开始于常见的加强筋中点外,还会开始于加强筋与加强筋联结处、加强筋与外框联结处。这主要是受加筋板的双向拉伸变形和应力集中的影响。进一步总结了随冲击波正压时间增长,能够引发加筋结构塑性变形的有效冲量和反射超压峰值阈值。研究结果对飞机气动外形、抗爆能力设计具有重要意义。
  • 图  1  某飞机典型加筋蒙皮试件

    Figure  1.  A typical reinforced skin specimen of an aircraft

    图  2  实验现场布局及夹具

    Figure  2.  Experimental layout and fixtures

    图  3  加筋蒙皮试件夹具和压紧结构

    Figure  3.  Reinforced skin specimen fixture and compression structure

    图  4  实验和数值模拟得到的压力载荷历程

    Figure  4.  Pressure history curves obtained by experiment and numerical simulation

    图  5  钢板中心形成的炸坑

    Figure  5.  The crater formed at the center of the steel plate

    图  6  考虑夹具的有限元模型

    Figure  6.  A finite element model considering the response of fixtures

    图  7  应变实验数据与模拟结果的比较

    Figure  7.  Comparison of experimental data and simulated results for strain

    图  8  位移实验数据与数值模拟结果的比较

    Figure  8.  Comparison of experimental data and simulated results for displacement

    图  9  实验件等效应变云图模拟结果

    Figure  9.  Simulated effective strain contour in the specimen

    图  10  不同反射压力峰值下,最大变形随正压作用时间的变化

    Figure  10.  The maximum deformation varied with positive pressure action time at different reflected pressure peaks

    图  11  不同反射压力峰值下,最大变形随有效冲量的变化

    Figure  11.  The maximum deformation varied with effective impulse at different reflected pressure peaks

    表  1  试件各结构件的厚度

    Table  1.   Thicknesses of different structural parts of the specimen

    结构部位厚度/mm
    蒙皮1.5
    外框1.2
    横向加强筋1.2
    纵向加强筋1.5
    下载: 导出CSV
  • [1] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading: a review: Part Ⅰ: theoretical considerations [J]. International Journal of Impact Engineering, 1989, 8(2): 159–170. DOI: 10.1016/0734-743X(89)90014-6.
    [2] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading: a review: Part Ⅱ: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8.
    [3] 焦立启, 侯海量, 陈鹏宇, 等. 爆炸冲击载荷下固支单向加筋板的动响应及破损特性研究 [J]. 兵工学报, 2019, 40(3): 592–600. DOI: 10.3969/j.issn.1000-1093.2019.03.019.

    JIAO L Q, HOU H L, CHEN P Y, et al. Research on dynamic response and damage characteristics of fixed supported one-way stiffened plates under blast loading [J]. Acta Armamentarii, 2019, 40(3): 592–600. DOI: 10.3969/j.issn.1000-1093.2019.03.019.
    [4] MCDONALD B, BORNSTEIN H, LANGDON G S, et al. Experimental response of high strength steels to localised blast loading [J]. International Journal of Impact Engineering, 2018, 115: 106–119. DOI: 10.1016/j.ijimpeng.2018.01.012.
    [5] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.

    HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.
    [6] 刘敬喜, 刘尧, 汤皓泉, 等. 爆炸载荷作用下单向加筋方板的大挠度塑性动力响应分析 [J]. 振动与冲击, 2011, 30(4): 182–187. DOI: 10.13465/j.cnki.jvs.2011.04.007.

    LIU J X, LIU Y, TANG H Q, et al. The large deflection dynamic plastic response analysis of one way stiffened square plates subjected to blast loads [J]. Journal of Vibration and Shock, 2011, 30(4): 182–187. DOI: 10.13465/j.cnki.jvs.2011.04.007.
    [7] NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates [J]. International Journal of Impact Engineering, 1995, 16(2): 273–291. DOI: 10.1016/0734-743X(94)00046-Y.
    [8] 朱锡, 牟金磊, 王恒, 等. 水下爆炸载荷作用下加筋板的毁伤模式 [J]. 爆炸与冲击, 2010, 30(3): 225–231. DOI: 10.11883/1001-1455(2010)03-0225-07.

    ZHU X, MU J L, WANG H, et al. Damage modes of stiffened plates subjected to underwater explosion load [J]. Explosion and Shock Waves, 2010, 30(3): 225–231. DOI: 10.11883/1001-1455(2010)03-0225-07.
    [9] RUDRAPATNA N S, VAZIRI R, OLSON M D. Deformation and failure of blast-loaded stiffened plates [J]. International Journal of Impact Engineering, 2000, 24(5): 457–474. DOI: 10.1016/S0734-743X(99)00172-4.
    [10] YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates: Part Ⅰ: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. DOI: 10.1016/j.ijimpeng.2003.09.048.
    [11] LANGDON G S, YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates: Part Ⅱ: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. DOI: 10.1016/j.ijimpeng.2003.09.050.
    [12] 吴林杰, 朱锡, 侯海量, 等. 空中近距爆炸下加筋板架的毁伤模式仿真研究 [J]. 振动与冲击, 2013, 32(14): 77–81, 126. DOI: 10.3969/j.issn.1000-3835.2013.14.013.

    WU L J, ZHU X, HOU H L, et al. Simulations for damage modes of a stiffened plate subjected to close-range air-blast loading [J]. Journal of Vibration and Shock, 2013, 32(14): 77–81, 126. DOI: 10.3969/j.issn.1000-3835.2013.14.013.
    [13] YUEN S C K, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load: Part Ⅲ: an update 25 years on [J]. International Journal of Impact Engineering, 2016, 107: 108–117. DOI: 10.1016/j.ijimpeng.2016.06.010.
    [14] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer, 1985: 119−136.
    [15] 杨军, 李焰, 张德志, 等. 光子多普勒测速仪与压杆相结合的冲击波反射压力测试技术 [J]. 兵工学报, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.

    YANG J, LI Y, ZHANG D Z, et al. Measuring technique of reflected blast wave pressure based on pressure bar and photonic Doppler velocimeter [J]. Acta Armamentarii, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.
    [16] 宁建国, 王成, 马天宝. 爆炸与冲击动力学 [M]. 北京: 国防工业出版社, 2010: 113−119.
    [17] 张德志. 柱形爆炸容器载荷与塑形结构响应研究[D]. 西安: 西北核技术研究所, 2012.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  707
  • HTML全文浏览量:  406
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 修回日期:  2020-09-17
  • 刊出日期:  2021-01-05

目录

    /

    返回文章
    返回