Reliability analysis of deepwater explosion test vessel based on dynamic prediction
-
摘要: 为了确保深水爆炸试验容器在服役期间的安全性,提出了一种基于智能预测的随机-区间动态可靠性模型,通过动态测试数据建立了容器响应的广义回归神经网络(general regression neural network,GRNN)预测模型,获得了容器的最大应变区间变量,同时考虑容器结构的随机特性,开展了现役深水爆炸试验容器的可靠性分析,并分别采用3种方法进行了可靠性指标计算。分析结果表明,对于深水爆炸试验容器这类高可靠性且缺乏样本数据的结构,建立基于动态预测的混合可靠性模型,并通过区间计算可靠性指标的方法简便、可行;模型的区间变量随着结构动态测试数据的变化而变化,且对结构的不确定性分析也是动态的,因此得到的容器可靠性也随着其服役过程不断推进,具有动态特性,可以更好地反映容器在服役期间的性能变化,为容器的使用维护提供决策依据。Abstract: A deep-water explosion test vessel is an important test equipment which is filled with water to simulate different water depth environment by loading different hydrostatic pressure, and it can be used to study deep water explosion theory and engineering technology based on the similarity principle. In order to ensure the safety of vessels used in deep-water explosion test, a random-interval dynamic reliability model based on intelligent prediction is proposed in this paper. A GRNN prediction network of vessel response is established through dynamic test data, and the maximum strain interval variable of the vessel is obtained. Considering the random characteristics of the vessel structure, the reliability analysis of the in-service deep-water explosion test vessel is carried out. During the period, three methods are used to calculate the reliability index, and the analysis shows that for the vessel structure with high reliability and lack of sample data, the hybrid reliability model based on dynamic prediction is established by the calculation of interval reliability index. The method is simple and feasible. At the same time, the interval variables of the model change with the structural dynamic test data, and the uncertainty analysis of the structure is also dynamic. Therefore, the reliability of the container obtained is also changing with the service process, and has dynamic characteristics, which can better reflect the performance changes of the container during the service period and provide the basis for the use and maintenance decision of the container.
-
表 1 测试应变数据
Table 1. Test stain data
试验
编号药量/
g加载静水压/
MPa容器应变/10−4 试验
编号药量/
g加载静水压/
MPa容器应变/10−4 测点1 测点2 测点1 测点2 1 5.0 0 4.90 6.00 17 0.8 1.0 0.85 1.29 2 5.0 2.0 4.19 5.27 18 2.4 1.0 1.42 2.71 3 10.0 0 6.14 6.07 19 0.8 1.5 0.98 2.13 4 10.0 2.0 5.60 5.85 20 2.4 1.5 1.70 1.14 5 0.8 0 1.02 1.92 21 0.8 2.0 0.99 1.20 6 0.8 0.5 1.38 3.66 22 2.4 2.0 1.94 1.70 7 0.8 1.0 2.43 2.87 23 0.8 0.3 0.99 1.49 8 0.8 1.5 1.51 2.57 24 2.4 0.3 1.11 1.71 9 0.8 2.0 1.14 3.45 25 0.8 1.3 0.65 1.11 10 2.4 0 1.82 3.83 26 0.8 0.8 0.71 1.07 11 2.4 1.0 2.67 5.60 27 2.4 0.8 1.32 1.90 12 2.4 2.0 1.97 4.54 28 2.4 1.5 1.11 2.27 13 0.8 0 0.54 1.25 29 2.4 1.3 1.78 1.79 14 2.4 0 1.89 2.85 30 0.8 1.8 0.68 1.12 15 0.8 0.5 0.87 2.09 31 2.4 1.8 1.82 2.05 16 2.4 0.5 1.37 2.53 表 2 随机变量分布
Table 2. Distribution of random variables
随机变量 均值 标准差 变异系数 分布类型 屈服强度 345 10.35 0.03 GASS 弹性模量 209 6.27 0.03 GASS 表 3 第32次试验预测结果
Table 3. Prediction results of the 32nd test
试验次数 药量/g 加载静水压/MPa 位置 容器应变/10−4 预测绝对误差 32 10 2.0 测点1 5.54 9.357 5 32 10 2.0 测点2 5.27 11.938 2 表 4 容器可靠性计算结果
Table 4. Calculation results of vessel reliability
计算方法 失效概率 区间可靠性指标 计算时间/s 区间随机化功能函数 0 0.277 5 随机区间化功能函数 3.375 1 0.001 0 二级功能函数 0 0.109 9 -
[1] 钟冬望, 李琳娜. 水介质爆炸容器动力响应分析与优化设计[M]. 北京: 科学出版社, 2016: 89−116. [2] BEN-HAIM Y. Convex models of uncertainty in radial pulse buckling of shells [J]. Journal of Applied Mechanics, 1993, 60(3): 683–688. DOI: 10.1115/1.2900858. [3] ELISHAKOFF I, ELISSEEFF P, GLEGG S A L. Nonprobabilistic, convex-theoretic modeling of scatter in material properties [J]. AIAA Journal, 1994, 32(4): 843–849. DOI: 10.2514/3.12062. [4] 郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型 [J]. 计算力学学报, 2001, 18(1): 56–60. DOI: 10.3969/j.issn.1007-4708.2001.01.010.GUO S X, LV Z Z, FENG Y S. A non-probabilistic model of structural reliability based on interval analysis [J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 56–60. DOI: 10.3969/j.issn.1007-4708.2001.01.010. [5] 郭书祥, 吕震宙. 结构可靠性分析的概率和非概率混合模型 [J]. 机械强度, 2002, 24(4): 524–526, 530. DOI: 10.3321/j.issn:1001-9669.2002.04.012.GUO S X, LÜ Z Z. Hybrid probabilistic and non-probabilistic model of structural reliability [J]. Journal of Mechanical Strength, 2002, 24(4): 524–526, 530. DOI: 10.3321/j.issn:1001-9669.2002.04.012. [6] 孙海龙. 结构可靠性分析区间模型的若干问题研究[D]. 南京: 南京航空航天大学, 2007: 64−76.SUN H L. Research on some issues about interval model for structural reliability analysis [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 64−76. [7] GUO J, DU X P. Reliability sensitivity analysis with random and interval variables [J]. International Journal for Numerical Methods in Engineering, 2009, 78(13): 1585–1671. DOI: 10.1002/nme.2543. [8] 李贵杰. 主客观不确定性结构可靠性分析方法研究[D]. 西安: 西北工业大学, 2014: 47−70.LI G J. Research on the the reliability methods for the aleatory and epistemic uncertaint structures [D]. Xi’an: Northwestern Polytechnical University, 2014: 47−70. [9] ZHANG J G, QIU J W, WANG P D. Hybrid reliability analysis for spacecraft docking lock with random and interval uncertainty [J]. International Journal of Aerospace Engineering, 2017(4): 1–9. DOI: 10.1155/2017/3920267. [10] 林峰, 陈建军, 曹鸿钧. 复合材料压力容器的概率与区间可靠性设计 [J]. 西安电子科技大学学报, 2017, 44(1): 45–51. DOI: 10.3969/j.issn:1001-2400.2017.01.009.LIN F, CHEN J J, GAO H J. Probabilistic and interval reliability design of the composite pressure vessel [J]. Journal of Xidian University, 2017, 44(1): 45–51. DOI: 10.3969/j.issn:1001-2400.2017.01.009. [11] 滑林, 吴凡, 牟金磊. 随机-非概率模型下的船体结构屈服强度可靠性分析 [J]. 国防科技大学学报, 2018, 40(6): 177–182. DOI: 10.11887/j.cn.201806025.HUA L, WU F, MOU J L. Reliability analysis on yielding strength of hull structure based on random non-probabilistic model [J]. Journal of National University of Defense Technology, 2018, 40(6): 177–182. DOI: 10.11887/j.cn.201806025. [12] 邱涛, 张建国, 邱继伟, 等. 基于二参数寻优设计点的混合结构可靠性分析算法 [J]. 兵工学报, 2019, 40(4): 865–873. DOI: 10.3969/j.issn.1000-1093.2019.04.022.QIU T, ZHANG J G, QIU J W, et al. Two-parameter optimization design point-based reliability analysis algorithm for structures with mixed uncertainty [J]. Acta Armamentarii, 2019, 40(4): 865–873. DOI: 10.3969/j.issn.1000-1093.2019.04.022. [13] 杨正茂, 张艳娟, 李德才, 等. 一种考虑结构强度退化的可靠性分析方法 [J]. 载人航天, 2017, 23(3): 384–390. DOI: 10.16329/j.cnki.zrht.2017.03.016.YANG Z M, ZHANG Y J, LI D C, et al. A reliability analysis method considering structural strength degradation [J]. Manned Spaceflight, 2017, 23(3): 384–390. DOI: 10.16329/j.cnki.zrht.2017.03.016. [14] 彭兆春. 基于疲劳损伤累积理论的结构寿命预测与时变可靠性分析方法研究[D]. 成都: 电子科技大学, 2017: 121−129.PENG Z C. Research on methods for structural life prediction and time-dependent reliability analysis using cumulative fatigue damage theories [D]. Chengdu: University of Electronic Science and Technology of China, 2017: 121−129. [15] 杨周, 郭丙帅, 张义民, 等. 基于随机载荷和强度退化的可靠性灵敏度分析 [J]. 东北大学学报(自然科学版), 2019, 40(5): 678–693. DOI: 10.12068/j.issn.1005-3026.2019.05.014.YANG Z, GUO B S, ZHANG Y M, et al. Reliability sensitivity analysis based on random load and strength degradation [J]. Journal of Northeastern University (Natural Science), 2019, 40(5): 678–693. DOI: 10.12068/j.issn.1005-3026.2019.05.014.