• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

血液-血管耦合特性与脉搏波传播特性的关系

缪馥星 王晖 王礼立 何文明 陈霞波 龚文波 丁圆圆 浣石 徐冲 谢燕青 卢意成 沈利君

缪馥星, 王晖, 王礼立, 何文明, 陈霞波, 龚文波, 丁圆圆, 浣石, 徐冲, 谢燕青, 卢意成, 沈利君. 血液-血管耦合特性与脉搏波传播特性的关系[J]. 爆炸与冲击, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
引用本文: 缪馥星, 王晖, 王礼立, 何文明, 陈霞波, 龚文波, 丁圆圆, 浣石, 徐冲, 谢燕青, 卢意成, 沈利君. 血液-血管耦合特性与脉搏波传播特性的关系[J]. 爆炸与冲击, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
Citation: MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082

血液-血管耦合特性与脉搏波传播特性的关系

doi: 10.11883/bzycj-2020-0082
基金项目: 国家自然科学基金(11872218,11572161);宁波市首批医疗卫生品牌学科基金(PPXK2018-07);浙江省“近海结构冲击安全防护与健康监测”重点科技创新团队(2013TD21);浙江省自然科学基金(LY20H020002);浙江省医药卫生科研项目(2018KY712)
详细信息
    作者简介:

    缪馥星(1980- ),女,博士,副教授,miaofuxing@nbu.edu.cn

    通讯作者:

    王礼立(1934- ),男,教授,博士生导师,wanglili@nbu.edu.cn

  • 中图分类号: O347.4

Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves

  • 摘要: 脉搏波既不可简单地理解为可压缩血液流体中的压力纵波,也不可简单地理解为沿固体血管传播的涨缩位移横波,而是超乎普通想象的流-固耦合和纵波-横波耦合的复杂波。从分析耦合本构关系的新途径出发,本文中提出了一个流-固耦合/纵波-横波耦合的串联模型,可为解读“位数形势”中医脉诊提供更丰富的信息。结果表明,脉搏波耦合系统的等效体积压缩模量Ks以及相应的耦合系统脉搏波传播速度cs主要依赖于两个无量纲参数:血液-血管模量比Kb(p)/E(p)和薄壁血管径厚比D(p)/h0,它们因人而异、因人的不同脉搏位置而异。文中定量分析了它们对cs的影响,显示人体的Kb/E值在103数量级,从而cs值在100~101 m/s数量级,以适应人体生理生化反应。由临床有创测量,证实脉搏体积横波与脉搏压力纵波是相耦合地以相同速度传播;还显示脉搏波是在其波阵面上具有氧合生化反应的“生物波”。此外,还讨论了“脉压放大”现象与非线性本构关系和与血管分叉处加载增强反射之间的关系,并讨论了Lewis关于重搏波形成的假设。
  • 图  1  串联模型

    Figure  1.  The series model proposed in this paper

    图  2  血液p-V关系时域图

    Figure  2.  p-V relation for blood

    图  3  薄壁圆管示意图

    Figure  3.  Thin-walled circular tube

    图  4  Hughes等[16]对狗实测的脉搏波(血液压力波(上),血管外径位移波(中),血管内径位移波(下))

    Figure  4.  Pulse waves measured by Hughes, et al[16] for a dog (blood pressure wave (top), vascular outer diameter displacement wave (middle), vascular inner diameter displacement wave (bottom))

    图  5  D/h0=10时,耦合系数αKb/E的变化

    Figure  5.  Relation between coupling coefficient αand Kb/E for D/h0=10

    图  6  Kb/E=1×103时,耦合系数αD/h0的变化

    Figure  6.  Relation between coupling coefficient α and D/h0 for Kb/E=1×103

    图  7  某患者冠状动脉介入手术中主动脉、肱动脉和桡动脉三处的监测动脉压力波视频截图

    Figure  7.  Video captures of measured pulse pressure waves in the aorta, brachial artery and radial artery of a patient undergoing coronary intervention

  • WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse wave system from the view-point of traditional Chinese medicine [C]//Proceedings of the ASME 2016, 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016. DOI: 10.1115/OMAE2016-55106.
    王礼立, 王晖. 脉搏波系统的力学模型及反演兼对若干中医学问题的讨论 [J]. 力学学报, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.

    WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse waves system with discussions on some concepts in the traditional Chinese medicine [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.
    王琦. 中医体质学 [M]. 北京: 人民卫生出版社, 2009.

    WANG Q. Constitutionology of Chinese medicine [M]. Beijing: People’s Medical Publishing House, 2009.
    王晖. 体质的中医保健 [M]. 宁波: 宁波出版社, 2009.

    WANG H. Traditional Chinese medicine health care of body constitutions [M]. Ningbo: Ningbo Press, 2009.
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    HU C S, CHUNG Y F, YEH C C, et al. Temporal and spatial properties of arterial pulsation measurement using pressure sensor array [J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012: 745127. DOI: 10.1155/2012/745127.
    XUE Y, SU Y, ZHANG C, et al. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation [J]. Optics and Lasers in Engineering, 2017, 98: 76–82. DOI: 10.1016/j.optlaseng.2017.05.018.
    MANCIA G, DE BACKER G, DOMINICZAK A, et al. 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) [J]. Journal of Hypertension, 2007, 25(6): 1105–1187. DOI: 10.1097/HJH.0b013e3281fc975a.
    中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会, 等. 中国高血压防治指南(2018年修订版) [J]. 中国心血管杂志, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.

    China Hypertension Prevention and Control Guidelines Revision Committee, Hypertension Alliance (China), Chinese Society of Cardiology, et al. 2018 Chinese guidelines for the management of hypertension [J]. Chinese Journal of Cardiovascular Medicine, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.
    MOENS A J. Die pulskurve [M]. Leiden: Brill, 1878.
    KORTEWEG D J. Ueber die Fortpflanzungsgeschwindigkeit des schalles in elastischen Röhren [J]. Annalen der Physik, 1878, 241(12): 525–542. DOI: 10.1002/andp.18782411206.
    HUGHES D J, BABBS C F, GEDDES L A, et al. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound [J]. Ultrasonic Imaging, 1979, 1(4): 356–367. DOI: 10.1177/016173467900100406.
    FUNG Y C. Biomechanics: circulation [M]. New York: Springer, 1997.
    MA Y J, CHOI J, HOURLIER-FARGETTE A, et al. Relation between blood pressure and pulse wave velocity for human arteries [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11144–11149. DOI: 10.1073/pnas.1814392115.
    TIMOSHENKO S P, GOODIER J N. Theory of elasticity [M]. 3rd ed. London: McGraw-Hill Book Company, 1970.
    HUGHES D J, FEARNOT N E, BABBS C F, et al. Continuous measurement of aortic radius change in vivo with an intra-aortic ultrasonic catheter [J]. Medical and Biological Engineering and Computing, 1985, 23(3): 197–202. DOI: 10.1007/BF02446857.
    URICK R J. A sound velocity method for determining the compressibility of finely divided substances [J]. Journal of Applied Physics, 1947, 18(11): 983–987. DOI: 10.1063/1.1697584.
    WANG S H, LEE L P, LEE J S. A linear relation between the compressibility and density of blood [J]. The Journal of the Acoustical Society of America, 2001, 109(1): 390–396. DOI: 10.1121/1.1333419.
    LAURENT S, GIRERD X, MOURAD J J, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension [J]. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14(7): 1223–1231. DOI: 10.1161/01.ATV.14.7.1223.
    王礼立, 王晖, 杨黎明, 等. 论脉搏波客观化和定量化研究的症结所在 [J]. 中华中医药杂志, 2017, 32(11): 4855–4863.

    WANG L L, WANG H, YANG L M, et al. Crux of objectification and quantification of pulse waves [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(11): 4855–4863.
    WEBSTER J G. Design of pulse Oximeters [M]. Boca Raton: CRC Press, 1997.
    LEWIS T. The factors influencing the prominence of the dicrotic wave [J]. The Journal of Physiology, 1906, 34(6): 414–429. DOI: 10.1113/jphysiol.1906.sp001165.
  • 期刊类型引用(9)

    1. 贾梦娜,龚文波. 基于压力脉搏波探讨2型糖尿病气虚痰浊型脉象特征及与症状相关性. 现代中西医结合杂志. 2025(01): 24-31 . 百度学术
    2. 徐仕侃,王晖,孙雪航,丁溢群,俞翠雯,陈一夫,张松松,陈霞波. 基于中医整体观探析糖尿病肾病Ⅲ、Ⅳ期患者脉搏波特征. 新中医. 2024(09): 82-87 . 百度学术
    3. 陈琥颖,龚文波,贾梦娜,丁溢群,陈一夫,廖晟极. 2型糖尿病气虚证和阴虚证常见脉象的脉搏波特征研究. 中医临床研究. 2024(32): 7-11 . 百度学术
    4. 李本森,卢意成,龚文波,缪馥星. 糖尿病患者“寸、关、尺”脉搏压力波形的频谱分析. 北京生物医学工程. 2023(02): 117-123+151 . 百度学术
    5. 王钒宇,祝兴,黄羽霖,罗静静,黎晖,陈启亮. 基于有限元分析法的中医脉宽模型高相关参数探究. 中医药信息. 2023(07): 23-29 . 百度学术
    6. 丁溢群,龚文波,范佳莹. 基于中医整体观的脉搏波理论探析阴虚型糖尿病患者脉搏波参数特征分析. 浙江中西医结合杂志. 2023(12): 1108-1110 . 百度学术
    7. 卢意成,李本森,缪馥星,龚文波. 血液黏性对脉搏波传播特性影响的定量分析. 北京生物医学工程. 2022(03): 235-241 . 百度学术
    8. 王礼立,王晖,丁圆圆,陈霞波,杨黎明,龚文波,浣石,缪馥星. 脉搏波本构关系实验研究的探索. 爆炸与冲击. 2022(12): 3-12 . 本站查看
    9. 王晖,王礼立,缪馥星,龚文波,浣石,徐冲. 论心脏功能的“泵说”与“波说”. 爆炸与冲击. 2020(11): 4-13 . 本站查看

    其他类型引用(5)

  • 加载中
推荐阅读
用于软材料的中应变率lshpb系统及应用
徐沛栋 等, 爆炸与冲击, 2025
远场冲击波下螺旋桨毁伤与空化特征研究
王志凯 等, 爆炸与冲击, 2025
针对个体防护的冲击波检测评估技术
胡勇 等, 爆炸与冲击, 2025
海拔高度对长直坑道内爆炸冲击波传播的影响
李勇 等, 爆炸与冲击, 2024
脉搏波传导速度评价血管老化的临床研究进展
吴静静 等, 中南大学学报(医学版), 2024
机体反应与血流动力学
王广健 等, 协和医学杂志, 2022
基础代谢率与心血管代谢疾病的相关性研究现状
莫利容 等, 解放军医学院学报, 2025
Critical review of techniques for food emulsion characterization
Kupikowska-Stobba, Barbara et al., APPLIED SCIENCES-BASEL, 2024
Synergistic effect of vegf and sdf-1α in endothelial progenitor cells and vascular smooth muscle cells
FRONTIERS IN PHARMACOLOGY
Hemodynamics of asymmetrically stenotic vertebral arteries based on fluid-solid coupling
JOURNAL OF BIOLOGICAL PHYSICS, 2025
Powered by
图(7)
计量
  • 文章访问数:  6882
  • HTML全文浏览量:  2793
  • PDF下载量:  146
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-03-24
  • 修回日期:  2020-03-29
  • 网络出版日期:  2020-04-02
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回