• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

具有体积分数梯度的连通装置甲烷-空气爆炸特性数值模拟

许晓元 孙金华 刘晅亚

许晓元, 孙金华, 刘晅亚. 具有体积分数梯度的连通装置甲烷-空气爆炸特性数值模拟[J]. 爆炸与冲击, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086
引用本文: 许晓元, 孙金华, 刘晅亚. 具有体积分数梯度的连通装置甲烷-空气爆炸特性数值模拟[J]. 爆炸与冲击, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086
XU Xiaoyuan, SUN Jinhua, LIU Xuanya. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient[J]. Explosion And Shock Waves, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086
Citation: XU Xiaoyuan, SUN Jinhua, LIU Xuanya. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient[J]. Explosion And Shock Waves, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086

具有体积分数梯度的连通装置甲烷-空气爆炸特性数值模拟

doi: 10.11883/bzycj-2020-0086
基金项目: 国家重点研发计划(2017YFC0806600)
详细信息
    作者简介:

    许晓元(1986- ),女,博士,助理研究员,xuxiaoyuan@tfri.com.cn

  • 中图分类号: O381

Numerical simulation of methane-air explosion in a connected device with volume fraction gradient

  • 摘要: 为了研究具有体积分数梯度的连通装置内甲烷-空气爆炸特性,以60 L圆柱体容器和20 L圆柱体容器通过3 m长,截面为0.035 m×0.035 m的方形管道而连接形成的容器管道连通装置作为研究对象,利用Fluidyn软件对均一体积分数的连通装置以及具有体积分数梯度的连通装置中甲烷-空气爆炸的特性进行了数值模拟。结果表明:连通装置中甲烷的均一体积分数为6.517%~8.067%时,并由大容器中心点火工况时,最大爆炸压力、最大爆炸压力上升速率、最高温度和最大速度,以及这些爆炸参数达到最大值时的时刻值随体积分数的变化约呈线性关系;连通装置大容器甲烷体积分数6.0%体积分数梯度为2.0%~8.0%且大容器中心点火时,最大爆炸压力、最大爆炸压力上升速率、最高温度和最大速度随体积分数梯度总体上呈现先增大后减小趋势;大容器中心点火时,最大爆炸压力位于小容器,最大压力上升速率位于管道1或管道2,最大速度位于管道3,速度值可达400~600m/s。本研究可为连通装置内可燃气体爆炸事故防控提供理论指导。
  • 图  1  体积分数梯度分类

    Figure  1.  Volume fraction gradient classification

    图  2  管道容器连通装置

    Figure  2.  A connection device with pipes and vessels

    图  3  网格划分

    Figure  3.  Model mesh generation

    图  4  实验装置和物理模型的比较

    Figure  4.  Comparison between the experimental apparatus and the physical model

    图  5  不同工况条件下最大爆炸压力随体积分数和体积分数梯度变化曲线

    Figure  5.  Changes of the maximum explosion pressure with volume fraction and volume fraction gradient under different working conditions

    图  6  不同工况条件下最大爆炸压力时刻值随体积分数和体积分数梯度变化曲线

    Figure  6.  Changes of the arrival time of the maximum explosion pressure with volume fraction and volume fraction gradientunder different working conditions

    图  7  不同工况下最大压力上升速率随体积分数和体积分数梯度的变化

    Figure  7.  Changes of the maximum pressure rise rate with volume fraction and volume fraction gradient under different working conditions

    图  8  不同工况下最大压力上升速率时刻随体积分数和体积分数梯度的变化

    Figure  8.  Changes of the arrival time of the maximum pressure rise rate with volume fraction and volume fraction gradient under different working conditions

    图  9  不同工况下最高温度随体积分数和体积分数梯度的变化

    Figure  9.  Changes of the maximum temperature with volume fraction and volume fraction gradient under different working conditions

    图  10  不同工况下最高温度时刻值随体积分数和体积分数梯度的变化

    Figure  10.  Changes of the arrival time of the maximum temperature with volume fraction and volume fraction gradient under different working conditions

    表  1  模拟工况

    Table  1.   Simulated working conditions

    工况体积分数梯度/%体积分数分布/%
    区域1区域2区域3区域4区域5
    10 6.517
    2266.5 7 7.5 8
    30 7.034
    4467 8 9 10
    50 7.551
    6667.5 910.5 12
    70 7.697
    86.567.6259.2510.87512.5
    90 7.827
    10767.75 9.511.25 13
    110 7.958
    127.567.8759.7511.62513.5
    130 8.067
    14868 1012 14
    下载: 导出CSV

    表  2  连通装置不同体积分数时最大爆炸压力相关参数

    Table  2.   Related parameters of the maximum explosion pressures for different volume fractions of connected devices

    工况体积分数/%最大爆炸压力
    位置时刻/s数值/MPa
    16.517区域50.1570.716
    37.034区域50.1470.758
    57.551区域50.1390.797
    77.696区域50.1370.810
    97.827区域50.1350.820
    117.958区域50.1330.829
    138.067区域50.1320.834
    下载: 导出CSV

    表  3  连通装置不同体积分数梯度时最大爆炸压力相关参数

    Table  3.   Related parameters of the maximum explosion pressures for different volume fraction gradients of connected devices

    工况体积分数梯度/%最大爆炸压力
    位置时刻/s数值/MPa
    22.0区域50.1540.754
    44.0区域50.1470.820
    66.0区域50.1510.814
    86.5区域50.1540.817
    107.0区域50.1560.821
    127.5区域50.1580.821
    148.0区域50.1600.791
    下载: 导出CSV

    表  4  连通装置不同体积分数时最大压力上升速率相关参数

    Table  4.   Related parameters of the maximum pressure rise rates for different volume fractions of connected devices

    工况体积分数/%最大压力上升速率
    位置时刻/s数值/(GPa·s−1
    16.517区域20.1500.194
    37.034区域30.1380.220
    57.551区域20.1320.247
    77.697区域20.1300.255
    97.830区域20.1290.260
    117.958区域20.1270.265
    138.067区域30.1230.267
    下载: 导出CSV

    表  5  连通装置不同体积分数梯度时最大压力上升速率相关参数

    Table  5.   Parameters related to the maximum pressure rise rates in the connected devices with different volume fraction gradients

    工况体积分数梯度/%最大压力上升速率
    位置时刻/s数值/(GPa·s−1
    22.0区域30.1440.220
    44.0区域20.1410.263
    66.0区域20.1440.240
    86.5区域20.1460.231
    107.0区域20.1480.234
    127.5区域20.1510.250
    148.0区域20.1530.247
    下载: 导出CSV

    表  6  连通装置不同均一体积分数下最高温度相关参数

    Table  6.   Related parameters of the maximum temperatures in connected devices with different volume fractions

    工况体积分数/%最高温度
    位置时刻/s数值/℃
    16.517区域10.1891 917.58
    37.034区域10.1822 023.45
    57.551区域10.1792 121.45
    77.697区域10.1762 156.08
    97.827区域10.1752 181.71
    117.958区域10.1732 209.39
    138.067区域10.1722 223.58
    下载: 导出CSV

    表  7  连通装置不同体积分数梯度时最高温度相关参数

    Table  7.   Rrelated parameters of the maximum temperatures in connected devices with different volume fraction gradients

    工况体积分数梯度/%最高温度
    位置时刻/s数值/℃
    22.0区域50.2081 946.72
    44.0区域50.2012 250.03
    66.0区域50.2052 248.07
    86.5区域50.2072 247.44
    107.0区域50.2082 291.28
    127.5区域50.2172 302.43
    148.0区域50.2422 251.81
    下载: 导出CSV

    表  8  连通装置不同体积分数时最大速度相关参数

    Table  8.   Related parameters of the maximum velocities in connected devices with different volume fractions

    工况体积分数/%最大速度
    位置时刻/s数值/(m·s−1
    16.517区域40.141450.01
    37.034区域40.133486.93
    57.551区域40.125517.60
    77.696区域40.122527.40
    97.827区域40.121533.92
    117.957区域40.119540.47
    138.067区域40.118543.77
    下载: 导出CSV

    表  9  连通装置存在不同体积分数梯度时最大速度相关参数

    Table  9.   Related parameters of the maximum velocities in connected devices with different volume fraction gradients

    工况体积分数梯度/%最大速度
    位置时刻/s数值/(m·s−1
    22.0区域40.138445.20
    44.0区域40.133456.60
    66.0区域40.136448.40
    86.5区域40.138443.01
    107.0区域40.141437.55
    127.5区域40.143431.70
    148.0区域40.145427.08
    下载: 导出CSV
  • [1] BARTKNECHT W. Explosion course prevention protection [M]. Berlin: Springer-Verlag, 1981.
    [2] PHYLAKTON H, ANDREWS G E. Gas explosions in linked vessels [J]. Journal of Loss Prevention in the Process Industries, 1993, 6(1): 15–19. DOI: 10.1016/0950-4230(93)80015-E.
    [3] LUNN G A, HOLBROW P, ANDRES S, et al. Dust explosions in totally enelosed interconnected vessel systems [J]. Journal of Loss Prevention in the Proeess Industries, 1995, 9(1): 45–58.
    [4] HOLBROW P, ANDRES S, LUNN G A. Dust explosions in interconnected vented vessels [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 91–103. DOI: 10.1016/0950-4230(95)00055-0.
    [5] HOLBROW P, LUNN G A. Dust explosion protection in linked vessels: guidance for containment and venting [J]. Journal of Loss Prevention in the Process Industries, 1999, 12: 227–234. DOI: 10.1016/S0950-4230(98)00050-3.
    [6] 严建骏, 蒋军成, 王志荣, 等. 连通容器内预混气体爆炸过程的实验研究 [J]. 中国安全生产科学技术, 2009, 4(6): 10–14.

    YAN J J, JIANG J C, WANG Z R, et al. Experimental investigation into explosion of premixed gases in linked vessels [J]. Safety Production Science and Technology in China, 2009, 4(6): 10–14.
    [7] 尤明伟, 蒋军成, 王志荣, 等. 连通容器中不同连通管径爆炸数值模拟分析 [J]. 工业安全与环保, 2010, 36(12): 25–26.

    YOU M W, JIANG J C, WANG Z R, et al. Numerical simulation of gas explosion in linked vessels with different pipe diameters [J]. Industrial Safety and Environmental Protection, 2010, 36(12): 25–26.
    [8] 王志荣, 蒋军成, 郑杨艳. 连通容器内气体爆炸过程的数值分析 [J]. 化学工程, 2006, 34(10): 13–16. DOI: 10.3969/j.issn.1005-9954.2006.10.004.

    WANG Z R, JIANG J C, ZHENG Y Y. Numerical analysis of gas explosion process in linked vessels [J]. Chemical Engineering, 2006, 34(10): 13–16. DOI: 10.3969/j.issn.1005-9954.2006.10.004.
    [9] 尤明伟, 喻源, 蒋军成, 等. 不同管长条件下连通容器预混气体的爆炸 [J]. 燃烧科学与技术, 2012, 18(3): 256–259.

    YOU M W, YU Y, JIANG J C, et al. Premixed flammable gas explosion in containers connected by pipes with different lengths [J]. Journal of Combustion Science and Technology, 2012, 18(3): 256–259.
    [10] 王志荣, 周超, 师喜林, 等. 连通容器内预混气体泄爆过程 [J]. 化工学报, 2011, 62(1): 287–291.

    WANG Z R, ZHOU C, SHI X L, et al. Gas explosion venting of premixed gases in linked vessels [J]. CIESC Journal, 2011, 62(1): 287–291.
    [11] THOMAS G O, SUTTON P, EDWARDS D H. The behavior of detonation waves at concentration gradients [J]. Combustion Flame, 1991(84): 312–322.
    [12] KUZNETSOV M S, ALEKSEEV V I, DOROFEEV S B, et al, Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures [C]// Twenty-Seventh International Symposium on Combustion/The Combustion Institute, 1998:2241–2247.
    [13] VOLLMER, K G, ETTNER F, SATTELMAYER T. Influence of concentration gradients on flame acceleration in tubes [J]. Energetic Matter Science Technology, 2011, 72: 74–77.
    [14] VOLLMER K G, ETTNER F, SATTELMAYER T. Deflagration-to-detonation transition in hydrogen-air mixtures with a concentration gradient [J]. Combust Science & Technology, 2012, 184(10-11): 1903–1915. DOI: 10.1080/00102202.2012.690652.
    [15] KESSLER D A, GAMEZO V N, ORAN E S. Wave structures and irregular detonation cells in methane-air mixtures with concentration gradients[C]//49th AIAA Aerospace Science Meeting. Orlando,Florida, 2011.
    [16] ISHII K, KOJIMA M. Behavior of detonation propagation in mixtures with concentration gradients [J]. Shock Waves, 2007, 17(1): 95–102.
    [17] WANG C J, WEN J X. Numerical simulations of hydrogen-air detonation wave propagation in a non-uniform semi-confined flat layer [C]//The Sixteenth International Colloquium on Dust Explosions and the Eleventh Colloquium on Gas, Vapour, Liquid and Hybrid Explosions. Bergen, Norway, 2014.
    [18] HAN W H, WANG C, CHUNG K. Role of transversal concentration gradient in detonation propagation [J]. Journal of Fluid Mechanics, 2019, 865: 602–649. DOI: 10.1017/jfm.2019.37.
    [19] 陈昊驰. 柱状空间内不同浓度甲烷爆炸传播特性的实验研究[D]. 石家庄: 华北科技学院, 2018: 38−44.
    [20] 王信群, 王婷, 徐海顺, 等. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸 [J]. 化工学报, 2015, 66(12): 5171–5178.

    WANG X Q, WANG T, XU H S, et al. Modification of commercial BC dry chemical powder suppressant and experiments on suppression of methane-air explosion [J]. CIESC Journal, 2015, 66(12): 5171–5178.
    [21] XIAO H H, HE X C, DUAN Q L, et al. An investigation of premixed flame propagation in a closed combustion duct with a 90° blend [J]. Applied Energy, 2014, 134: 248–256. DOI: 10.1016/j.apenergy.2014.07.071.
    [22] 尤明伟. 连通容器气体爆炸及泄爆动力学过程研究[D]. 南京: 南京工业大学,2011.
    [23] 王志荣. 受限空间气体爆炸传播及其动力学过程研究[D]. 南京: 南京工业大学, 2005.
  • 期刊类型引用(3)

    1. 周刚,孔阳,崔洋洋,钱新明,傅砺烨,张琦. 城市地下排水管道中燃气爆炸及气-液两相耦合作用规律. 爆炸与冲击. 2024(03): 90-104 . 本站查看
    2. 黄鎏炜,钱笠君,张勇. LNG管道内爆炸效应数值仿真分析. 舰船科学技术. 2024(08): 8-13 . 百度学术
    3. 周楠,程桂敏,潘炎辉,李红宇,谢永迅,张金鹏. 民居内燃气泄漏爆炸特性及其数值仿真研究进展. 中国安全生产科学技术. 2023(02): 159-166 . 百度学术

    其他类型引用(5)

  • 加载中
推荐阅读
基于正交试验的u形通风采煤工作面瓦斯爆炸超压影响因素分析
刘佳佳 等, 爆炸与冲击, 2025
泡沫铜对密闭管道内合成气爆炸特性影响的实验研究
郑凯 等, 爆炸与冲击, 2024
磁场效应对甲烷爆炸影响的机理
高建村 等, 爆炸与冲击, 2023
Cf3i和co2抑制甲烷-空气爆炸实验研究
程方明 等, 爆炸与冲击, 2022
多种材质障碍物对甲烷-氢气预混燃气的促爆影响
焦一飞 等, 高压物理学报, 2024
球形非金属材料对甲烷掺氢爆炸抑制机理研究
唐毅 等, 高压物理学报, 2022
20 l球型爆炸装置气液输送管段结构的优化设计
李峰 等, 高压物理学报, 2023
A review of laser-induced graphene: from experimental and theoretical fabrication processes to emerging applications
Zhang, Zhi et al., CARBON, 2023
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY
Efficiency analysis of ocean compressed air energy storage system under constant volume air storage conditions
ENERGY
Powered by
图(10) / 表(9)
计量
  • 文章访问数:  826
  • HTML全文浏览量:  378
  • PDF下载量:  81
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-10-10
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回