不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征

杨龙龙 刘艳 杨春丽

杨龙龙, 刘艳, 杨春丽. 不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征[J]. 爆炸与冲击, 2021, 41(2): 025401. doi: 10.11883/bzycj-2020-0093
引用本文: 杨龙龙, 刘艳, 杨春丽. 不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征[J]. 爆炸与冲击, 2021, 41(2): 025401. doi: 10.11883/bzycj-2020-0093
YANG Longlong, LIU Yan, YANG Chunli. Explosion characteristics of methane-air mixture near lower explosion limit at different relative humidities[J]. Explosion And Shock Waves, 2021, 41(2): 025401. doi: 10.11883/bzycj-2020-0093
Citation: YANG Longlong, LIU Yan, YANG Chunli. Explosion characteristics of methane-air mixture near lower explosion limit at different relative humidities[J]. Explosion And Shock Waves, 2021, 41(2): 025401. doi: 10.11883/bzycj-2020-0093

不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征

doi: 10.11883/bzycj-2020-0093
基金项目: 北京市博士后科研活动经费A类(ZZ2019-61);北京市科学技术研究院创新团队(IG201702C2)
详细信息
    作者简介:

    杨龙龙(1990- ),男,博士,助理研究员,ylongbj@163.com

    通讯作者:

    刘 艳(1977- ),女,博士,研究员,liuyandhn@163.com

  • 中图分类号: O389

Explosion characteristics of methane-air mixture near lower explosion limit at different relative humidities

  • 摘要: 为了研究不同湿度条件下低浓度甲烷-空气混合物爆炸特征,设计了饱和湿空气发生及储存装置,对管路、气囊和爆炸腔体进行温度控制和流量调节,实现了不同相对湿度的甲烷-空气混合气体的配置。采用20 L球形爆炸测试装置,分析不同相对湿度、甲烷浓度对混合物的最大爆炸压力、最大压力上升速率、爆炸下限及层流燃烧速度的影响。结果表明,随着相对湿度增大,最大爆炸压力和最大爆炸压力上升速率逐渐下降,且呈一定的线性关系。混合气体相对湿度从27.7%增大到80.1%时,甲烷爆炸下限从5.15%上升到5.25%,上升率1.9%,层流燃烧速度随相对湿度的增大也呈线性降低趋势。在本文条件下,相对湿度对甲烷-空气混合物的爆炸影响较小,这主要与常温常压下水蒸气的饱和分压力较低有关,但在高温高压时仍需考虑水蒸气含量的增大对混合气体爆炸特征的影响。
  • 图  1  实验装置

    Figure  1.  Experimental equipment

    图  2  饱和湿空气发生及储存装置

    Figure  2.  Saturated vapor generator and container

    图  3  不同甲烷浓度时最大爆炸压力

    Figure  3.  Maximum explosion pressures withdifferent methane concentrations

    图  4  不同相对湿度时甲烷最大爆炸压力

    Figure  4.  Maximum explosion pressures at different relative humidities

    图  5  不同甲烷浓度时最大压力上升速率

    Figure  5.  Maximum rates of pressure rise with different methane concentrations

    图  6  不同相对湿度时最大压力上升速率

    Figure  6.  Maximum rates of pressure rise at different relative humidities

    图  7  不同相对湿度时甲烷爆炸下限

    Figure  7.  Lower explosion limits of methane-air mixture at different relative humidities

    图  8  不同甲烷浓度时层流燃烧速度

    Figure  8.  Laminar burning velocities with different methane concentrations

    图  9  不同相对湿度时层流燃烧速度

    Figure  9.  Laminar burning velocities at different relative humidities

    表  1  甲烷爆炸特征随相对湿度变化的拟合参数

    Table  1.   Fitted parameters of CH4 explosion characteristics at different relative humidities

    φ(CH4)/%a1 b1$R^2_1 $a2 b2$ R^2_1 $a3 b3R32
    pmax/MPa=a1 Hmix/%+b1(dp/dt)max/(MPa·s−1)= a2 Hmix/%+b2SL/(m·s−1)= a3 Hmix/%+ b3
    6.5−0.000 8090.4600.951−0.21839.5100.834−0.000 1560.2080.965
    6.3−0.001 2200.3910.875−0.20132.2430.798−0.000 2640.1810.965
    6.1−0.001 4700.2480.610−0.14723.6970.894−0.000 1400.1390.912
    5.9−0.001 0000.2040.628−0.11320.1020.901−0.000 4150.1140.939
    下载: 导出CSV

    表  2  甲烷空气混合物爆炸极限

    Table  2.   Explosion limits of methane-air mixtures

    容器T0/Kp0/kPaHmix/%W/J判断标准φL(CH4)/%φU(CH4)/%出处
    8 L玻璃管298100观察火焰是否传播5.0±0.1文献[10]
    20 L近球形2981001升压7%5.0±0.115.9±0.1文献[10]
    120 L球形2981002升压7%5.0±0.115.7±0.2文献[10]
    3.4 L玻璃管29810052~731观察火焰是否传播5.1516.15文献[22]
    12 L球形308102010观察火焰是否传播4.9±0.115.8±0.2文献[23]
    13.3 L 钢管285~303100~10235~80升压7%5.214.8文献[20]
    20 L球形298100010升压7%5.015.0文献[24]
    20 L球形29810185~10010升压7%6.014.0文献[17]
    20 L球形298100010升压7%5.115.8文献[21]
    20 L近球形299~30010165~6610升压5%~7%5.1515.9文献[25]
    20 L球形295~29810055~7010升压7%5.0214.55文献[13]
    40 L圆柱形293100升压5%4.6515.5文献[26]
    下载: 导出CSV
  • [1] KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
    [2] 李润之, 黄子超, 司荣军. 环境温度对瓦斯爆炸压力及压力上升速率的影响 [J]. 爆炸与冲击, 2013, 33(4): 415–419. DOI: 10.11883/1001-1455(2013)04-0415-05.

    LI R Z, HUANG Z C, SI R J. Influence of environmental temperature on gas explosion pressure and its rise rate [J]. Explosion and Shock Waves, 2013, 33(4): 415–419. DOI: 10.11883/1001-1455(2013)04-0415-05.
    [3] 罗振敏, 王涛, 文虎, 等. CO对CH4爆炸及自由基发射光谱特性的影响 [J]. 煤炭学报, 2019, 44(7): 2167–2177. DOI: 10.13225/j.cnki.jccs.2018.1123.

    LUO Z M, WANG T, WEN H, et al. Explosion and flame emission spectra characteristics of CH4-air mixtures with CO addition [J]. Journal of China Coal Society, 2019, 44(7): 2167–2177. DOI: 10.13225/j.cnki.jccs.2018.1123.
    [4] 罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.

    LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
    [5] 钱海林, 王志荣, 蒋军成. N2/CO2混合气体对甲烷爆炸的影响 [J]. 爆炸与冲击, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.

    QIAN H L, WANG Z R, JIANG J C. Influence of N2/CO2 mixture on methane explosion [J]. Explosion and Shock Waves, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.
    [6] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.

    ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
    [7] ZHANG B, XIU G L, BAI C H. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures [J]. Fuel, 2014, 124: 125–132. DOI: 10.1016/j.fuel.2014.01.090.
    [8] 余明高, 刘梦茹, 温小萍, 等. 超细水雾-多孔材料协同抑制瓦斯爆炸实验研究 [J]. 煤炭学报, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.

    YU M G, LIU M R, WEN X P, et al. Synergistic inhibition of gas explosion by ultrafine water mist-porous materials [J]. Journal of China Coal Society, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.
    [9] 裴蓓, 韦双明, 余明高, 等. 气液两相介质抑制管道甲烷爆炸协同增效作用 [J]. 煤炭学报, 2018, 43(11): 3130–3136. DOI: 10.13225/j.cnki.jccs.2018.0064.

    PEI B, WEI S M, YU M G, et al. Synergistic inhibition effect on methane explosion in pipeline by gas-liquid two-phase medium [J]. Journal of China Coal Society, 2018, 43(11): 3130–3136. DOI: 10.13225/j.cnki.jccs.2018.0064.
    [10] CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3−5): 327–340. DOI: 10.1016/S0950-4230(99)00037-6.
    [11] 任常兴, 张欣, 张琰, 等. 可燃气体及混合物爆炸极限影响特征研究 [J]. 消防科学与技术, 2017, 36(11): 1500–1503. DOI: 10.3969/j.issn.1009-0029.2017.11.006.

    REN C X, ZHANG X, ZHANG Y, et al. Overview on the characteristics of explosion limits of gases and gas mixtures [J]. Fire Science and Technology, 2017, 36(11): 1500–1503. DOI: 10.3969/j.issn.1009-0029.2017.11.006.
    [12] 谭迎新, 霍雨江, 焦国太, 等. 可燃气体动态爆炸极限测试装置设计 [J]. 消防科学与技术, 2018, 37(9): 1235–1238. DOI: 10.3969/j.issn.1009-0029.2018.09.024.

    TAN Y X, HUO Y J, JIAO G T, et al. Design of combustible gas dynamic explosion limit test device [J]. Fire Science and Technology, 2018, 37(9): 1235–1238. DOI: 10.3969/j.issn.1009-0029.2018.09.024.
    [13] 刘丹, 司荣军, 李润之. 环境湿度对瓦斯爆炸特性的影响 [J]. 高压物理学报, 2015, 29(4): 307–312. DOI: 10.11858/gywlxb.2015.04.011.

    LIU D, SI R J, LI R Z. Ambient humidity influence on explosion characteristics of methane-air mixture [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 307–312. DOI: 10.11858/gywlxb.2015.04.011.
    [14] 谭汝媚, 张奇, 黄莹. 环境湿度对环氧丙烷蒸气爆炸参数的影响 [J]. 高压物理学报, 2013, 27(3): 325–330. DOI: 10.11858/gywlxb.2013.03.002.

    TAN R M, ZHANG Q, HUANG Y. Ambient humidity influence on explosion characteristics parameters of gaseous epoxypropane [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 325–330. DOI: 10.11858/gywlxb.2013.03.002.
    [15] 朱丕凯. 环境因素对甲烷爆炸极限浓度的影响研究 [J]. 煤炭技术, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.

    ZHU P K. Study on influence of ambient factors on methane explosive limit concentration [J]. Coal Technology, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.
    [16] 李成兵, 吴国栋, 经福谦. 水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算 [J]. 中国安全科学学报, 2009, 19(1): 118–124. DOI: 10.3969/j.issn.1003-3033.2009.01.019.

    LI C B, WU G D, JING F Q. Experimental investigation and numerical computation of methane combustion and explosion suppressed by vapor [J]. China Safety Science Journal, 2009, 19(1): 118–124. DOI: 10.3969/j.issn.1003-3033.2009.01.019.
    [17] SHEN X B, ZHANG B, ZHANG X L, et al. Explosion behaviors of mixtures of methane and air with saturated water vapor [J]. Fuel, 2016, 177: 15–18. DOI: 10.1016/j.fuel.2016.02.095.
    [18] QI S, DU Y, ZHANG P L, et al. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion [J]. Journal of Hazardous Materials, 2017, 323: 593–601. DOI: 10.1016/j.jhazmat.2016.06.040.
    [19] 伯纳德•刘易斯, 京特•冯•埃尔贝. 燃气燃烧与瓦斯爆炸[M]. 王方, 译. 3版. 北京: 中国建筑工业出版社, 2007: 581−584.
    [20] 王华, 葛岭梅, 邓军, 等. 受限空间可燃性气体爆炸特性的对比 [J]. 煤炭学报, 2009, 34(2): 218–223. DOI: 10.13225/j.cnki.jccs.2009.02.003.

    WANG H, GE L M, DENG J, et al. Comparaison of explosion characteristics of ignitable gases in confined space [J]. Journal of China Coal Society, 2009, 34(2): 218–223. DOI: 10.13225/j.cnki.jccs.2009.02.003.
    [21] 高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.

    GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
    [22] WANG T, LUO Z M, WEN H, et al. Effects of flammable gases on the explosion characteristics of CH4 in air [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 183–190. DOI: 10.1016/j.jlp.2017.06.018.
    [23] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. A study on flammability limits of fuel mixtures [J]. Journal of Hazardous Materials, 2008, 155(3): 440–448. DOI: 10.1016/j.jhazmat.2007.11.085.
    [24] ZHANG B, NG H D. Explosion behavior of methane-dimethyl ether/air mixtures [J]. Fuel, 2015, 157: 56–63. DOI: 10.1016/j.fuel.2015.04.058.
    [25] 李润之. 点火能量与初始压力对瓦斯爆炸特性的影响研究[D]. 青岛: 山东科技大学, 2010: 50−67.
    [26] GIERAS M, KLEMENS R, RARATA G, et al. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 263–270. DOI: 10.1016/j.jlp.2005.05.004.
    [27] 陆胤臣, 陶刚, 张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算 [J]. 爆炸与冲击, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.

    LU Y C, TAO G, ZHANG L J. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel [J]. Explosion and Shock Waves, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.
    [28] LEWIS B, VON ELBE G. Determination of the speed of flames and the temperature distribution in a spherical bomb from time-pressure explosion records [J]. The Journal of Chemical Physics, 1934, 2(5): 283–290. DOI: 10.1063/1.1749464.
    [29] VAN DEN BULCK E. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 35–42. DOI: 10.1016/j.jlp.2004.10.004.
    [30] DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152–166. DOI: 10.1016/j.jlp.2005.03.007.
    [31] MIAO H Y, JI M, JIAO Q, et al. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures [J]. International Journal of Hydrogen Energy, 2009, 34(7): 3145–3155. DOI: 10.1016/j.ijhydene.2009.01.059.
    [32] LIAO S Y, JIANG D M, CHENG Q. Determination of laminar burning velocities for natural gas [J]. Fuel, 2004, 83(9): 1247–1250. DOI: 10.1016/j.fuel.2003.12.001.
    [33] HAN G Z, HU Q X. Effects of electric field on saturated vapor pressure [J]. The Journal of Physical Chemistry C, 2020, 124(3): 1820–1826. DOI: 10.1021/acs.jpcc.9b09825.
    [34] WANG S M, WU D J, GUO H, et al. Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank [J]. Fuel, 2020, 259: 116265. DOI: 10.1016/j.fuel.2019.116265.
    [35] LIANG Y T, ZENG W. Numerical study of the effect of water addition on gas explosion [J]. Journal of Hazardous Materials, 2009, 174(1−3): 386–392. DOI: 10.1016/j.jhazmat.2009.09.064.
    [36] ZHANG P L, DU Y, WU S L, et al. Experiments of the secondary ignition of gasoline-air mixture in a confined tunnel [J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1773–1780. DOI: 10.1007/s10973-014-4082-y.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  367
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 修回日期:  2020-06-01
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回