TATB基非均质炸药预冲击减敏的数值模拟

黄奎邦 刘益儒 洪滔 于鑫 彭文扬 舒俊翔

黄奎邦, 刘益儒, 洪滔, 于鑫, 彭文扬, 舒俊翔. TATB基非均质炸药预冲击减敏的数值模拟[J]. 爆炸与冲击, 2021, 41(3): 032301. doi: 10.11883/bzycj-2020-0100
引用本文: 黄奎邦, 刘益儒, 洪滔, 于鑫, 彭文扬, 舒俊翔. TATB基非均质炸药预冲击减敏的数值模拟[J]. 爆炸与冲击, 2021, 41(3): 032301. doi: 10.11883/bzycj-2020-0100
HUANG Kuibang, LIU Yiru, HONG Tao, YU Xin, PENG Wenyang, SHU Junxiang. Numerical simulation of pre-shock desensitization in TATB-based heterogeneous explosive[J]. Explosion And Shock Waves, 2021, 41(3): 032301. doi: 10.11883/bzycj-2020-0100
Citation: HUANG Kuibang, LIU Yiru, HONG Tao, YU Xin, PENG Wenyang, SHU Junxiang. Numerical simulation of pre-shock desensitization in TATB-based heterogeneous explosive[J]. Explosion And Shock Waves, 2021, 41(3): 032301. doi: 10.11883/bzycj-2020-0100

TATB基非均质炸药预冲击减敏的数值模拟

doi: 10.11883/bzycj-2020-0100
基金项目: 国家自然科学基金(11902044)
详细信息
    作者简介:

    黄奎邦(1983- ),男,博士研究生,副研究员,huang_kuibang@iapcm.ac.cn

    通讯作者:

    刘益儒(1987- ),女,博士,副研究员,liuyiru1987@yeah.net

  • 中图分类号: O389

Numerical simulation of pre-shock desensitization in TATB-based heterogeneous explosive

  • 摘要: 为了对一种TATB基非均质炸药的预冲击起爆现象展开数值模拟研究,将基于冲击温度及压力的AWSD反应率模型耦合进二维结构网格拉氏弹塑性流体力学程序。利用炸药及其产物的冲击雨贡纽实验数据校验了未反应炸药及产物的状态方程参数,通过一维冲击起爆的模拟,标定了反应速率模型参数。模拟了炸药在弱冲击0.45 μs后跟随的强冲击波的二次冲击实验,结果表明,受预压缩区域的炸药反应变慢,到爆轰距离增长了约1 mm,与该炸药二次冲击实验减敏现象相符。模拟拐角效应时,爆轰波经过拐角后,在拐角附近形成稳定的不起爆区域,与主要成分相同的LX-17炸药的拐角效应实验的死区特征相符。数值模拟结果表明,基于冲击温度及压力的AWSD反应率模型可以较好地模拟非均质炸药预冲击减敏问题。
  • 图  1  未反应炸药和产物的雨贡纽曲线

    Figure  1.  Hugoniot curves of unreacted explosives and products

    图  2  冲击压力与到爆轰距离的关系

    Figure  2.  Relationships between impact pressure and run-to-detonation distance

    图  3  冲击起爆粒子速度曲线

    Figure  3.  Particle velocity curves of shock to detonation

    图  4  二次冲击压缩炸药粒子速度曲线的实验结果

    Figure  4.  Experimental particle velocity curves of explosive by double-shock compression

    图  5  二次冲击压缩炸药粒子速度曲线的数值模拟结果

    Figure  5.  Simulated particle velocity curves of explosive by double-shock compression

    图  6  不同位置计算单元的反应份额

    Figure  6.  Reaction fractions of numerical elements at different positions

    图  7  不同位置计算单元的温度

    Figure  7.  Temperatures of numerical elements at different positions

    图  8  LX-17 拐角效应[32]

    Figure  8.  LX-17 corner turning effect[32]

    图  9  拐角效应计算模型

    Figure  9.  Corner-turning numerical model

    图  10  AWSD模型的拐角效应特征时刻密度和反应份额分布

    Figure  10.  Density and reaction fraction distributions at character times for corner-turning by the AWSD model

    图  11  WSD模型的拐角效应特征时刻密度和反应份额分布

    Figure  11.  Density and reaction fraction distributions at character times for corner-turning by the WSD model

    表  1  未反应TATB基炸药的Davis状态方程参数

    Table  1.   Davis EOS parameters of unreacted TATB-based explosive

    A/(mm·μs−1)BCZΓ0sE0/(kJ·g−1)αstcVs/(kJ·g−1·K−1)
    1.934.260.3000.563.800.757 00.000 967
    下载: 导出CSV

    表  2  TATB基炸药产物的Davis状态方程参数

    Table  2.   Davis EOS parameters of reaction products of TATB-based explosive

    Akvc/(cm3·g−1)pc/GPanbcVg/(kJ·g−1·K−1)
    0.835 6031.300.926 851.485 14.242 660.850.001 072
    下载: 导出CSV

    表  3  TATB基炸药AWSD模型参数

    Table  3.   Parameters of the AWSD model for the TATB-based explosive

    npps/GPak1/s−1T1/Ka1b1b2k2/s−1T2/Kfsλcδλ
    0.651 527.603361 7240.060 812.1220.910 2006 2780.035 870.876 40.021 68
    下载: 导出CSV

    表  4  二次冲击起爆实验的到爆轰距离和到爆轰时间的实验和数值模拟结果

    Table  4.   Experimental and simulated results of distance and time of run to detonation by double-shock initiation

    实验方法ρ0/(g·cm−3)v0/(km·s−1)p0/GPapm/GPaL*/mmT*/μs
    3实验1.8811.6696.135 612.649 99.8451.716
    数值模拟10.1411.679
    2实验1.8811.7326.470 612.706 49.1451.356
    数值模拟9.2401.505
    下载: 导出CSV
  • [1] CAMPBELL A W, DAVIS W C, RAMSAY J B, et al. Shock initiation of solid explosives [J]. Physics of Fluids, 1961, 4(4): 511. DOI: 10.1063/1.1706354.
    [2] CAMPBELL A W, TRAVIS J R. The shock desensitization of PBX-9404 and composition B-3 [C] // Proceedings of the 8th International Detonation Symposium. Albuquerque: Naval Surface Weapons Center, 1985: 1057−1068.
    [3] MULFORD R N, SHEFFIELD S A, ALCON R R. Preshock desensitization of PBX explosives [J]. AIP Conference Proceedings, 1994, 309(1): 1405–1408. DOI: 10.1063/1.46243.
    [4] TARVER C M, COOK T M, URTIEW P A, et al. Multiple shock initiation of LX-17 [C] // Proceedings of the 10th International Detonation Symposium. Boston: Office of Naval Research, 1993: 676−703.
    [5] BAT’KOV Y V, GLUSHAK B L, NOVIKOV S A. Desensitization of pressed explosive compositions based on TNT, RDX, and HMX under double shock-wave loading [J]. Combustion, Explosion and Shock Waves, 1995, 31(4): 482–485. DOI: 10.1007/BF00789372.
    [6] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Double shock initiation of the HMX based explosive EDC-37 [J]. AIP Conference Proceedings, 2002, 620(1): 999–1002. DOI: 10.1063/1.1483706.
    [7] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008.
    [8] HUSSAIN T, LIU Y, HUANG F L, et al. Modeling and simulation of preshock desensitization in heterogeneous explosives using a mesoscopic reaction rate model [J]. Simulation, 2015, 91(11): 980–988. DOI: 10.1177/0037549715608962.
    [9] BORDZILOVSKII S A, KARAKHANOV S M. Desensitization of pressed RDX/paraffin and HMX/paraffin compounds by multiple shock waves [J]. Combustion, Explosion and Shock Waves, 1995, 31(2): 227–235. DOI: 10.1007/BF00755754.
    [10] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
    [11] JOHNSON J N, TANG P K, FOREST C A. Shock-wave initiation of heterogeneous reactive solids [J]. Journal of Applied Physics, 1985, 57(9): 4323–4334. DOI: 10.1063/1.334591.
    [12] WESCOTT B L, STEWART D S, DAVIS W C. Equation of state and reaction rate for condensed-phase explosives [J]. Journal of Applied Physics, 2005, 98(5): 053514. DOI: 10.1063/1.2035310.
    [13] DEOLIVEIRA G, KAPILA A K, SCHWENDEMAN D W, et al. Detonation diffraction, dead zones and the ignition and growth model [C] // Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006.
    [14] HUSSAIN T, LIU Y, HUANG F L, et al. Desensitization by pre-shocking in heterogeneous explosives and its numerical modelling [J]. Central European Journal of Energetic Materials, 2016, 13(2): 357–379. DOI: 10.22211/cejem/64990.
    [15] 郝鹏程, 冯其京, 洪滔, 等. 钝感炸药点火增长模型的欧拉数值模拟 [J]. 爆炸与冲击, 2012, 32(3): 243–250. DOI: 10.11883/1001-1455(2012)03-0243-08.

    HAO P C, FENG Q J, HONG T, et al. Eulerian simulation on insensitive explosives with the ignition-growth reactive model [J]. Explosion and Shock Waves, 2012, 32(3): 243–250. DOI: 10.11883/1001-1455(2012)03-0243-08.
    [16] STARKENBERG J. Shock-pressure and pseudo-entropic approaches to explosive initiation modeling [C] // Proceedings of the 15th International Detonation Symposium. San Francisco, 2014: 908−916.
    [17] STARKENBERG J. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode [C] // Proceedings of the 12th International Detonation Symposium. Annapolis: Office of Naval Research, 2002.
    [18] HANDELEY C A. CREST reactive flow model [C] // Proceedings of the 13th International Detonation Symposium. Norfolk, 2006.
    [19] DESBIENS N, MATIGNON C, SORIN R. Temperature-based model for condensed-phase explosive detonation [J]. Journal of Physics: Conference Series, 2014, 500(15): 152004. DOI: 10.1088/1742-6596/500/15/152004.
    [20] ASLAM T D. Shock temperature dependent rate law for plastic bonded explosives [J]. Journal of Applied Physics, 2018, 123(14): 145901. DOI: 10.1063/1.5020172.
    [21] 裴红波, 刘俊明, 张旭, 等. 基于反向撞击法的JB-9014炸药Hugoniot关系测量 [J]. 爆炸与冲击, 2019, 39(5): 052301. DOI: 10.11883/bzycj-2017-0395.

    PEI H B, LIU J M, ZHANG X, et al. Measurement of Hugoniot relation for unreacted JB-9014 explosive with reverse-impact method [J]. Explosion and Shock Waves, 2019, 39(5): 052301. DOI: 10.11883/bzycj-2017-0395.
    [22] 刘俊明, 张旭, 裴红波, 等. JB-9014钝感炸药冲击Hugoniot关系测量 [J]. 高压物理学报, 2018, 32(3): 033202. DOI: 10.11858/gywlxb.20170669.

    LIU J M, ZHANG X, PEI H B, et al. Measurement of Hugoniot relation for JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 033202. DOI: 10.11858/gywlxb.20170669.
    [23] 张旭, 池家春, 冯民贤. JB9014钝感炸药冲击绝热线测量 [J]. 高压物理学报, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011.

    ZHANG X, CHI J C, FENG M X. Hugoniot relation of JB9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011.
    [24] 刘俊明. JB-9014炸药未反应状态方程研究[D]. 四川绵阳: 中国工程物理研究院, 2018.
    [25] 徐辉, 孙占峰. 钝感高能炸药JB-9014做功能力的实验研究 [J]. 高压物理学报, 2013, 27(4): 582–586. DOI: 10.11858/gywlxb.2013.04.018.

    XU H, SUN Z F. An experimental study on the capacity for work of insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 582–586. DOI: 10.11858/gywlxb.2013.04.018.
    [26] 曾代朋, 陈军, 谭多望. 超压爆轰产物冲击绝热线的实验研究 [J]. 高压物理学报, 2010, 24(1): 76–80. DOI: 10.11858/gywlxb.2010.01.014.

    ZENG D P, CHEN J, TAN D W. Experiment research on the Hugoniot of JB-9014 explosive over-driven detonation product [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 76–80. DOI: 10.11858/gywlxb.2010.01.014.
    [27] TANG P K, ANDERSON W W, FRITZ J N, et al. A study of the overdriven behaviors of PBX 9501 and PBX 9502 [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, CO, 1998.
    [28] 张琪敏, 张旭, 赵康, 等. TATB基钝感炸药JB-9014的冲击起爆反应增长规律 [J]. 爆炸与冲击, 2019, 39(4): 041405. DOI: 10.11883/bzycj-2018-0050.

    ZHANG Q M, ZHANG X, ZHAO K, et al. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014 [J]. Explosion and Shock Waves, 2019, 39(4): 041405. DOI: 10.11883/bzycj-2018-0050.
    [29] 黄文斌, 文尚刚, 谭多望, 等. 在球面散心冲击波作用下JB-9014炸药冲击引爆过程实验研究 [J]. 爆炸与冲击, 2006, 26(4): 373–376. DOI: 10.11883/1001-1455(2006)04-0373-04.

    HUANG W B, WEN S G, TAN D W, et al. Experimental study on shock initiation process of JB-9014 under loading conditions of divergent spherical shock wave [J]. Explosion and Shock Waves, 2006, 26(4): 373–376. DOI: 10.11883/1001-1455(2006)04-0373-04.
    [30] 訾攀登, 陈军, 张蓉, 等. 二次压缩条件下JOB-9003炸药特性研究 [J]. 高压物理学报, 2017, 31(2): 155–161. DOI: 10.11858/gywlxb.2017.02.007.

    ZI P D, CHEN J, ZHANG R, et al. Characteristics of JOB-9003 in double shocks experiments [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 155–161. DOI: 10.11858/gywlxb.2017.02.007.
    [31] FERM E N, MORRIS C L, QUINTANA J P, et al. Proton radiography examination of unburned regions in PBX 9502 corner turning experiments [J]. AIP Conference Proceedings, 2002, 620(1): 966–969. DOI: 10.1063/1.1483699.
    [32] SOUERS P C, ANDRESKI H G, COOK Ⅲ C F, et al. LX-17 corner-turning [J]. Propellants, Explosives, Pyrotechnics, 2004, 29(6): 359–367. DOI: 10.1002/prep.200400067.
    [33] WHITWORTH N J. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures [J]. Journal of Physics: Conference Series, 2014, 500(5): 052050. DOI: 10.1088/1742-6596/500/5/052050.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  214
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-05-30
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回