高温空气下C/SiC复合材料断裂韧性实时测试和微观结构表征分析

陈伟华 王丽燕 张晗翌 李冠姝 迟蓬涛 马静

陈伟华, 王丽燕, 张晗翌, 李冠姝, 迟蓬涛, 马静. 高温空气下C/SiC复合材料断裂韧性实时测试和微观结构表征分析[J]. 爆炸与冲击, 2021, 41(4): 043103. doi: 10.11883/bzycj-2020-0104
引用本文: 陈伟华, 王丽燕, 张晗翌, 李冠姝, 迟蓬涛, 马静. 高温空气下C/SiC复合材料断裂韧性实时测试和微观结构表征分析[J]. 爆炸与冲击, 2021, 41(4): 043103. doi: 10.11883/bzycj-2020-0104
CHEN Weihua, WANG Liyan, ZHANG Hanyi, LI Guanshu, CHI Pengtao, MA Jing. In-situ measurements of fracture toughness and microstructure characterization of C/SiC composites at elevated temperatures in air[J]. Explosion And Shock Waves, 2021, 41(4): 043103. doi: 10.11883/bzycj-2020-0104
Citation: CHEN Weihua, WANG Liyan, ZHANG Hanyi, LI Guanshu, CHI Pengtao, MA Jing. In-situ measurements of fracture toughness and microstructure characterization of C/SiC composites at elevated temperatures in air[J]. Explosion And Shock Waves, 2021, 41(4): 043103. doi: 10.11883/bzycj-2020-0104

高温空气下C/SiC复合材料断裂韧性实时测试和微观结构表征分析

doi: 10.11883/bzycj-2020-0104
详细信息
    通讯作者:

    陈伟华(1984- ),男,硕士,高级工程师,veihua1984@163.com

  • 中图分类号: O346.1;TB332

In-situ measurements of fracture toughness and microstructure characterization of C/SiC composites at elevated temperatures in air

  • 摘要: 为了研究高温空气下C/SiC复合材料断裂韧性和微观结构,采用单边切口梁三点弯曲法实时测试了C/SiC复合材料在高温空气下的断裂韧性,并采用电子扫描显微镜 (scanning electron microscope,SEM)和X 射线衍射分析仪 (X-ray diffraction, XRD)分析了复合材料在不同温度下的破坏断口和失效机制。研究结果表明随测试温度升高,C/SiC复合材料断裂韧性降低,材料的断裂形式由脆性断裂逐渐演变成塑性断裂。从室温升温到1 000 ℃测试温度条件下,C/SiC复合材料的断裂韧性由12.5 MPa·m1/2降低为10.96 MPa·m1/2,降幅仅为12%,C/SiC复合材料高温断裂韧性良好。不同温度下,材料呈现出不同形式的断裂形貌。常温下断口形貌主要可以看到纤维拔出的现象,随着温度的升高,该现象基本消失,断裂截面变得更平整,材料的强度主要取决于基体的强度。
  • 图  1  断裂韧性测试示意图

    Figure  1.  Diagram of fracture toughness test

    图  2  试验系统

    Figure  2.  Test system

    图  3  试验前后样品

    Figure  3.  Sample before and after the test

    图  4  常温下C/SiC复合材料的微观形貌

    Figure  4.  Microscopic morphologies of C/SiC composites at 25 °C

    图  5  不同温度下复合材料的XRD谱

    Figure  5.  XRD patterns of composites at different temperatures

    图  6  不同温度下复合材料的XRD局部放大图

    Figure  6.  XRD partial enlargement of composite materials at different temperatures

    图  7  C/SiC复合材料热重曲线

    Figure  7.  Thermogravimetric curve of C/SiC composites

    图  8  不同温度下材料断裂韧性的载荷-位移曲线

    Figure  8.  Load-displacement curves of fracture toughness of composites at different temperatures

    图  9  复合材料不同温度下的断裂韧性

    Figure  9.  Fracture toughness of composites at different temperatures

    图  10  断裂韧性测试后样品能谱图

    Figure  10.  Spectral energy spectra of composite fracture toughness test

    图  11  复合材料断裂韧性测试后样品的XRD谱图

    Figure  11.  XRD pattern of samples after fracture toughness test of composites

    图  12  常温下断裂测试断口微观形貌

    Figure  12.  Fracture microscopic topography at normal temperature

    图  13  高温下断裂韧性测试后的断口微观形貌

    Figure  13.  Fracture micromorphology after fracture toughness test at elevated temperatures

    表  1  25 °C时EDS能谱

    Table  1.   EDS energy at 25 °C

    元素质量百分比/%原子百分比/%
    C, K78.5686.47
    Si, K11.795.55
    O, K9.657.98
    总计100.00100.00
    下载: 导出CSV

    表  2  800 °C时EDS能谱

    Table  2.   EDS energy at 800 °C

    元素质量百分比/%原子百分比/%
    C, K18.8420.12
    Si, K46.6930.87
    O, K34.4840.02
    总计100.00100.00
    下载: 导出CSV

    表  3  1000 °C时EDS能谱

    Table  3.   EDS energy at 1000 °C

    元素质量百分比/%原子百分比/%
    Si, K33.8047.27
    O, K66.2052.73
    总计100.00100.00
    下载: 导出CSV
  • [1] MA Q S, LIU H T, PAN Y, et al. Research progress on the application of C/SiC composites in scram jet [J]. Journal of Inorganic Materials, 2014, 28(3): 247–255. DOI: 10.3724/SPJ.1077.2013.12466.
    [2] LIU W, CHEN Z H, WANG S. Progress of actively cooled ceramic matrix composites applied in advanced propulsion systems [J]. Material Engineering, 2012(11): 92–96. DOI: info:doi/10.3969/j.issn.1001-4381.2013.06.001.
    [3] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展 [J]. 航空制造技术, 2003(1): 24–32. DOI: 10.3969/j.issn.1671-833X.2003.01.009.

    ZHANG L T, CHENG L F, XU Y D. Progress in re-search work of new CMC-SiC [J]. Aeronautical Manufacturing Technology, 2003(1): 24–32. DOI: 10.3969/j.issn.1671-833X.2003.01.009.
    [4] 秦淑颖, 闫联生, 崔红, 等. Cf/SiC陶瓷基复合材料在航空航天领域的研究与应用 [J]. 材料导报, 2007, 21(S2): 239–240,252. DOI: 10.3321/j.issn:1005-023X.2007.z2.084.

    QIN S Y, YAN L SH, CUI H, et al. Application and development of Cf/SiC ceramic matrix composites in aerospace [J]. Materials Review, 2007, 21(S2): 239–240,252. DOI: 10.3321/j.issn:1005-023X.2007.z2.084.
    [5] IMUTA M, GOTON J. Development of high temperature materials including CMCs for space application [J]. Key Engineering Material, 1999, 164−165: 439–444. DOI: 10.4028/www.scientific.net/KEM.164-165.439.
    [6] CHEN X, LI Y, SHI C, et al. The dynamic tensile properties of 2D-C/SiC composites at elevated temperatures [J]. International Journal of Impact Engineering, 2015, 79(5): 75–82. DOI: 10.1016/j.ijimpeng.2014.10.006.
    [7] 徐颖, 邵彬彬, 许维伟, 等. 短切碳纤维C/SiC陶瓷基复合材料的动态劈裂拉伸实验 [J]. 爆炸与冲击, 2017, 37(2): 315–322. DOI: 10.11883/1001-1455(2017)02-0315-08.

    XU Y, SHAO B B, XU W W, et al. Dynamic splitting tensile test of short carbon fiber C/SiC ceramic matrix composites [J]. Explosion and Shock Waves, 2017, 37(2): 315–322. DOI: 10.11883/1001-1455(2017)02-0315-08.
    [8] 陈煊, 程礼, 陈卫. 二维C/SiC复合材料准静态和动态拉伸力学性能 [J]. 复合材料学报, 2016, 33(12): 2846–2853. DOI: 10.13801/j.cnki.fhclxb.20160330.002.

    CHEN X, CHEN L, CHEN W, et al. Quai-static and dynamic tensile mechanical properties of two dimensional C/SiC composites [J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2846–2853. DOI: 10.13801/j.cnki.fhclxb.20160330.002.
    [9] WANG H L, ZHANG C Y, LIU Y S, et al. Temperature dependency of interlaminar shear strength of 2D C/SiC composites [J]. Materials & Design, 2012, 36(4): 172–176. DOI: 10.1016/j.matdes.2011.10.048.
    [10] 姜娟, 李开元, 范尚武, 等. C/C多孔体的高温热处理对C/SiC复合材料结构及力学性能的影响 [J]. 材料导报B, 2013, 27(1): 86–88. DOI: 10.3969/j.issn.1005-023X.2013.02.023.

    JIANG J, LI K Y, FAN S W, et al. The effects of heat treatment of C/C porous substance on microstructure and mechanical property of C/SiC composites [J]. Materials Reports B, 2013, 27(1): 86–88. DOI: 10.3969/j.issn.1005-023X.2013.02.023.
    [11] 陈俊, 佀明森, 张人发, 等. 高温下C/SiC复合材料弯曲断裂性能实时测试和微观结构表征分析 [J]. 实验力学, 2016, 31(4): 244–252. DOI: 10.7520/1001-4888-15-139.

    CHEN J, SI M S, ZHANG R F, et al. In-situ measurements of bending fracture behavior and microstructure analysis of C/SiC composites under high temperatures [J]. Journal of Experimental Mechanics, 2016, 31(4): 244–252. DOI: 10.7520/1001-4888-15-139.
    [12] 索涛, 李玉龙, 刘明爽. 二维C/SiC复合材料高温压缩力学行为研究 [J]. 兵工学报, 2010, 31(4): 516–520.

    SUO T, LI Y L, LIU M S. Research on mechanical behavior of 2D C/SiC composites at elevated temperature under uniaxial compression [J]. Acta Armamentarii, 2010, 31(4): 516–520.
    [13] CHEN S A, HU H, ZHANG Y, et al. Effects of TaC amount on the properties of 2D C/SiC-TaC composites prepared via precursor infiltration and pyrolysis [J]. Materials & Design, 2013, 51: 19–24. DOI: 10.1016/j.matdes.2013.03.073.
    [14] LABRUGÈRE C, GUETTE A, NASLAIN R. Effect of ageing treatments at high temperature on the microstructure and mechanical behavior of 2D nicalon/C/SiC composites 1: ageing under vacuum or argon [J]. Journal of the European Ceramic Society, 1997, 17(5): 623–640. DOI: 10.1016/S0955-2219(96)00204-X.
    [15] LABRUGÈRE C, GUETTE A, NASLAIN R. Effect of ageing treatments at high temperature on the microstructure and mechanical behavior of 2D nicalon/C/SiC composites 2: ageing under CO and influence of a SiC seal coating [J]. Journal of the European Ceramic Society, 1997, 17(5): 641–657. DOI: 10.1016/S0955-2219(96)00204-X.
    [16] 刘小瀛, 张钧, 张立同, 等. C/SiC 复合材料应力氧化失效机理 [J]. 无机材料学报, 2006, 21(5): 1191–1196. DOI: CNKI:SUN:WGCL.0.2006-05-027.

    LIU X Y, ZHANG J, ZHANG L T, et al. Failure mechanism of C/SiC composites under stress in oxidizing environments [J]. Journal of Inorganic Materials, 2006, 21(5): 1191–1196. DOI: CNKI:SUN:WGCL.0.2006-05-027.
    [17] 中国国家标准化管理委员会. 精细陶瓷断裂韧性试验方法: 单边预裂纹梁(SEPB)法: GBT 23806—2009[S]. 北京: 中国建筑材料科学研究总院, 2009.
    [18] 马俊, 熊信柏, 黎晓华, 等. 从Bragg方程的Ewald图建立倒易点阵概念 [J]. 化学教育, 2018, 39(14): 12–15.

    MA J, XIONG X B, LI X H, et al. Establishment of the concept of rciprocal lattice from Ewald diagram explanation on Bragg equation [J]. Chinese Journal of Chemical Education, 2018, 39(14): 12–15.
    [19] 李冠姝. SiC基复合材料的制备及其高温力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LI G S. The produced process and the high-temperature mechanical properties of SiC matrix composite [D]. Harbin: Harbin Institute of Technology, 2019.
    [20] 殷晓光. C/SiC陶瓷基复合材料的力学及高温性能研究[D]. 北京: 清华大学, 2011.

    YIN X G. Research on mechanical and high temperature properties of C/SiC ceramic matrix composites [D]. Beijing: Tsinghua University, 2011.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  279
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-08-14
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回