In-situ measurements of fracture toughness and microstructure characterization of C/SiC composites at elevated temperatures in air
-
摘要: 为了研究高温空气下C/SiC复合材料断裂韧性和微观结构,采用单边切口梁三点弯曲法实时测试了C/SiC复合材料在高温空气下的断裂韧性,并采用电子扫描显微镜 (scanning electron microscope,SEM)和X 射线衍射分析仪 (X-ray diffraction, XRD)分析了复合材料在不同温度下的破坏断口和失效机制。研究结果表明随测试温度升高,C/SiC复合材料断裂韧性降低,材料的断裂形式由脆性断裂逐渐演变成塑性断裂。从室温升温到1 000 ℃测试温度条件下,C/SiC复合材料的断裂韧性由12.5 MPa·m1/2降低为10.96 MPa·m1/2,降幅仅为12%,C/SiC复合材料高温断裂韧性良好。不同温度下,材料呈现出不同形式的断裂形貌。常温下断口形貌主要可以看到纤维拔出的现象,随着温度的升高,该现象基本消失,断裂截面变得更平整,材料的强度主要取决于基体的强度。Abstract: To study the fracture toughness and microstructure of C/SiC composites at elevated temperature in air, the fracture toughness of C/SiC composites at elevated temperature in air was in-situ measured by SENB (single edge notch beam) under TPB (three point bending) method. The fracture and failure mechanism of the composites at different temperatures were analyzed by SEM (scanning electron microscope) and XRD (X-ray diffraction). The results show that with the increase of temperature, the fracture toughness of C/SiC composites decreases, and the fracture mode gradually changes from brittle fracture to plastic fracture. The fracture toughness of C/SiC composites decreases from 12.504 MPa·m1/2 to 10.958 MPa·m1/2 with a reduction of 12% from room temperature to 1 000 °C. The material exhibits a good high-temperature fracture toughness. Under different temperatures, the material exhibits different modes of fracture morphology. At the normal temperature, the fracture morphology can mainly show the phenomenon of fiber pull-out. With the increase of temperature, the phenomenon basically disappears, the fracture cross section becomes flatter, and the strength of the material mainly depends on the strength of the substrate.
-
表 1 25 °C时EDS能谱
Table 1. EDS energy at 25 °C
元素 质量百分比/% 原子百分比/% C, K 78.56 86.47 Si, K 11.79 5.55 O, K 9.65 7.98 总计 100.00 100.00 表 2 800 °C时EDS能谱
Table 2. EDS energy at 800 °C
元素 质量百分比/% 原子百分比/% C, K 18.84 20.12 Si, K 46.69 30.87 O, K 34.48 40.02 总计 100.00 100.00 表 3 1000 °C时EDS能谱
Table 3. EDS energy at 1000 °C
元素 质量百分比/% 原子百分比/% Si, K 33.80 47.27 O, K 66.20 52.73 总计 100.00 100.00 -
[1] MA Q S, LIU H T, PAN Y, et al. Research progress on the application of C/SiC composites in scram jet [J]. Journal of Inorganic Materials, 2014, 28(3): 247–255. DOI: 10.3724/SPJ.1077.2013.12466. [2] LIU W, CHEN Z H, WANG S. Progress of actively cooled ceramic matrix composites applied in advanced propulsion systems [J]. Material Engineering, 2012(11): 92–96. DOI: info:doi/10.3969/j.issn.1001-4381.2013.06.001. [3] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展 [J]. 航空制造技术, 2003(1): 24–32. DOI: 10.3969/j.issn.1671-833X.2003.01.009.ZHANG L T, CHENG L F, XU Y D. Progress in re-search work of new CMC-SiC [J]. Aeronautical Manufacturing Technology, 2003(1): 24–32. DOI: 10.3969/j.issn.1671-833X.2003.01.009. [4] 秦淑颖, 闫联生, 崔红, 等. Cf/SiC陶瓷基复合材料在航空航天领域的研究与应用 [J]. 材料导报, 2007, 21(S2): 239–240,252. DOI: 10.3321/j.issn:1005-023X.2007.z2.084.QIN S Y, YAN L SH, CUI H, et al. Application and development of Cf/SiC ceramic matrix composites in aerospace [J]. Materials Review, 2007, 21(S2): 239–240,252. DOI: 10.3321/j.issn:1005-023X.2007.z2.084. [5] IMUTA M, GOTON J. Development of high temperature materials including CMCs for space application [J]. Key Engineering Material, 1999, 164−165: 439–444. DOI: 10.4028/www.scientific.net/KEM.164-165.439. [6] CHEN X, LI Y, SHI C, et al. The dynamic tensile properties of 2D-C/SiC composites at elevated temperatures [J]. International Journal of Impact Engineering, 2015, 79(5): 75–82. DOI: 10.1016/j.ijimpeng.2014.10.006. [7] 徐颖, 邵彬彬, 许维伟, 等. 短切碳纤维C/SiC陶瓷基复合材料的动态劈裂拉伸实验 [J]. 爆炸与冲击, 2017, 37(2): 315–322. DOI: 10.11883/1001-1455(2017)02-0315-08.XU Y, SHAO B B, XU W W, et al. Dynamic splitting tensile test of short carbon fiber C/SiC ceramic matrix composites [J]. Explosion and Shock Waves, 2017, 37(2): 315–322. DOI: 10.11883/1001-1455(2017)02-0315-08. [8] 陈煊, 程礼, 陈卫. 二维C/SiC复合材料准静态和动态拉伸力学性能 [J]. 复合材料学报, 2016, 33(12): 2846–2853. DOI: 10.13801/j.cnki.fhclxb.20160330.002.CHEN X, CHEN L, CHEN W, et al. Quai-static and dynamic tensile mechanical properties of two dimensional C/SiC composites [J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2846–2853. DOI: 10.13801/j.cnki.fhclxb.20160330.002. [9] WANG H L, ZHANG C Y, LIU Y S, et al. Temperature dependency of interlaminar shear strength of 2D C/SiC composites [J]. Materials & Design, 2012, 36(4): 172–176. DOI: 10.1016/j.matdes.2011.10.048. [10] 姜娟, 李开元, 范尚武, 等. C/C多孔体的高温热处理对C/SiC复合材料结构及力学性能的影响 [J]. 材料导报B, 2013, 27(1): 86–88. DOI: 10.3969/j.issn.1005-023X.2013.02.023.JIANG J, LI K Y, FAN S W, et al. The effects of heat treatment of C/C porous substance on microstructure and mechanical property of C/SiC composites [J]. Materials Reports B, 2013, 27(1): 86–88. DOI: 10.3969/j.issn.1005-023X.2013.02.023. [11] 陈俊, 佀明森, 张人发, 等. 高温下C/SiC复合材料弯曲断裂性能实时测试和微观结构表征分析 [J]. 实验力学, 2016, 31(4): 244–252. DOI: 10.7520/1001-4888-15-139.CHEN J, SI M S, ZHANG R F, et al. In-situ measurements of bending fracture behavior and microstructure analysis of C/SiC composites under high temperatures [J]. Journal of Experimental Mechanics, 2016, 31(4): 244–252. DOI: 10.7520/1001-4888-15-139. [12] 索涛, 李玉龙, 刘明爽. 二维C/SiC复合材料高温压缩力学行为研究 [J]. 兵工学报, 2010, 31(4): 516–520.SUO T, LI Y L, LIU M S. Research on mechanical behavior of 2D C/SiC composites at elevated temperature under uniaxial compression [J]. Acta Armamentarii, 2010, 31(4): 516–520. [13] CHEN S A, HU H, ZHANG Y, et al. Effects of TaC amount on the properties of 2D C/SiC-TaC composites prepared via precursor infiltration and pyrolysis [J]. Materials & Design, 2013, 51: 19–24. DOI: 10.1016/j.matdes.2013.03.073. [14] LABRUGÈRE C, GUETTE A, NASLAIN R. Effect of ageing treatments at high temperature on the microstructure and mechanical behavior of 2D nicalon/C/SiC composites 1: ageing under vacuum or argon [J]. Journal of the European Ceramic Society, 1997, 17(5): 623–640. DOI: 10.1016/S0955-2219(96)00204-X. [15] LABRUGÈRE C, GUETTE A, NASLAIN R. Effect of ageing treatments at high temperature on the microstructure and mechanical behavior of 2D nicalon/C/SiC composites 2: ageing under CO and influence of a SiC seal coating [J]. Journal of the European Ceramic Society, 1997, 17(5): 641–657. DOI: 10.1016/S0955-2219(96)00204-X. [16] 刘小瀛, 张钧, 张立同, 等. C/SiC 复合材料应力氧化失效机理 [J]. 无机材料学报, 2006, 21(5): 1191–1196. DOI: CNKI:SUN:WGCL.0.2006-05-027.LIU X Y, ZHANG J, ZHANG L T, et al. Failure mechanism of C/SiC composites under stress in oxidizing environments [J]. Journal of Inorganic Materials, 2006, 21(5): 1191–1196. DOI: CNKI:SUN:WGCL.0.2006-05-027. [17] 中国国家标准化管理委员会. 精细陶瓷断裂韧性试验方法: 单边预裂纹梁(SEPB)法: GBT 23806—2009[S]. 北京: 中国建筑材料科学研究总院, 2009. [18] 马俊, 熊信柏, 黎晓华, 等. 从Bragg方程的Ewald图建立倒易点阵概念 [J]. 化学教育, 2018, 39(14): 12–15.MA J, XIONG X B, LI X H, et al. Establishment of the concept of rciprocal lattice from Ewald diagram explanation on Bragg equation [J]. Chinese Journal of Chemical Education, 2018, 39(14): 12–15. [19] 李冠姝. SiC基复合材料的制备及其高温力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.LI G S. The produced process and the high-temperature mechanical properties of SiC matrix composite [D]. Harbin: Harbin Institute of Technology, 2019. [20] 殷晓光. C/SiC陶瓷基复合材料的力学及高温性能研究[D]. 北京: 清华大学, 2011.YIN X G. Research on mechanical and high temperature properties of C/SiC ceramic matrix composites [D]. Beijing: Tsinghua University, 2011.