大型舰船在水下接触爆炸下的毁伤与防护研究综述

金键 朱锡 侯海量 李典 陈鹏宇 高圣智

金键, 朱锡, 侯海量, 李典, 陈鹏宇, 高圣智. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020, 40(11): 111401. doi: 10.11883/bzycj-2020-0105
引用本文: 金键, 朱锡, 侯海量, 李典, 陈鹏宇, 高圣智. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020, 40(11): 111401. doi: 10.11883/bzycj-2020-0105
JIN Jian, ZHU Xi, HOU Hailiang, LI Dian, CHEN Pengyu, GAO Shengzhi. Review on the damage and protection of large naval warships subjected to underwater contact explosions[J]. Explosion And Shock Waves, 2020, 40(11): 111401. doi: 10.11883/bzycj-2020-0105
Citation: JIN Jian, ZHU Xi, HOU Hailiang, LI Dian, CHEN Pengyu, GAO Shengzhi. Review on the damage and protection of large naval warships subjected to underwater contact explosions[J]. Explosion And Shock Waves, 2020, 40(11): 111401. doi: 10.11883/bzycj-2020-0105

大型舰船在水下接触爆炸下的毁伤与防护研究综述

doi: 10.11883/bzycj-2020-0105
基金项目: 国家自然科学基金项目(51479204, 51679246, 51979277)
详细信息
    作者简介:

    金 键(1990- ),男,博士,助理研究员,nuejinjian@163.com

    通讯作者:

    朱 锡(1961- ),男,博士,教授,zhuxi816@163.com

  • 中图分类号: O389; U661.4

Review on the damage and protection of large naval warships subjected to underwater contact explosions

  • 摘要: 大型舰船受到水中兵器的巨大威胁,尤其是在水下接触爆炸情况下,船体结构将产生严重的局部毁伤,给舰船的战斗力乃至生命力带来严峻挑战。本文以大型舰船水下防护结构为研究对象,简要概述了各国海军大型舰船水下防护结构形式的发展历程,分析了水下接触爆炸下的毁伤载荷以及对舷侧多舱防护结构的毁伤机理,总结了基于具体结构和不同毁伤元的防护措施;并针对目前的研究现状,提出了有待进一步研究的问题。以期为舰船的水下防护设计提供参考,从而提高我国大型舰船的结构抗毁伤能力
  • 图  1  水雷接触爆炸[2]

    Figure  1.  Mines underwater contact explosions[2]

    图  2  鱼雷水下接触爆炸

    Figure  2.  Torpedoes underwater contact explosions

    图  3  水下接触爆炸毁伤试验

    Figure  3.  Damage experiments of underwater contact explosions

    图  4  水下近距与接触爆炸下的主要毁伤载荷

    Figure  4.  Major damage loading generated by underwater close-range and contact explosions

    图  5  多舱防护结构在陆上水中接触爆炸试验[18]

    Figure  5.  Experiment on multicompartment protective structure subjected to underwater contact explosion on land[18]

    图  6  日本“长门”号战列舰(1936年)

    Figure  6.  JPN Nagato battleship (1936)

    图  7  美国“萨拉托加”号[19]

    Figure  7.  USS“Saratoga” aircraft carriers[19]

    图  8  三舱式水下防护结构[19]

    Figure  8.  Three-compartment underwater protective structure[19]

    图  9  二战后期各型航母水下防护结构[19]

    Figure  9.  The underwater protection structure of various aircraft carriers in the later period of world war II[19]

    图  10  美国“福莱斯特”级(1952年)[19]

    Figure  10.  USS “Forrestal”class (1952)[19]

    图  11  美国“美国”号(1961年)[19]

    Figure  11.  USS United State (1961)[19]

    图  12  英国CAV-01型航母(1965年设计稿)[4]

    Figure  12.  UK“CAV-01”aircraft carriers (buleprint-1965)[4]

    图  13  英、美海军多型航母舷侧防护结构[4]

    Figure  13.  Schematic of broadside protection structure of multi-type aircraft carriers of UK and USS[4]

    A: air cabin; L: liquid cabin; F: Foam cabin

    图  14  水下多舱防护结构破坏过程示意图[20]

    Figure  14.  Schematic diagram of failure process of underwater multi-compartment protection structure

    图  15  美国加利福尼亚号战列舰舷侧损伤

    Figure  15.  Side damage on the USS California

    图  16  防雷舱各层防护结构的破坏模型[24]

    Figure  16.  Failure mode of each defensive bulkhead in broadside defense cabin[24]

    图  17  舷侧空舱内典型测点压力时程曲线[59]

    Figure  17.  Pressure-time histories of typical measuring points on side empty cabin

    图  18  膨胀舱壁载荷特性区域分布[60]

    Figure  18.  Distribution of load characteristics on isolate bulkhead[60]

    图  19  载荷简化模型[60]

    Figure  19.  Simplified models of load[60]

    图  20  液压能定向释放技术[102]

    Figure  20.  Hydraulic energy redirection andrelease technology[102]

    图  21  充气水箱对目标结构的防护[99]

    Figure  21.  Protection of aerated watercontainer on target structure[99]

    图  22  薄的空气挡板示意图[105]

    Figure  22.  Schematic of the impact tank with thin air filled baffles[105]

    图  23  三角架作为消波结构[106]

    Figure  23.  Bars of triangular used as mitigation memebers[106]

    图  24  蓄液结构填充蜂窝夹芯铝[84]

    Figure  24.  Fluid filled tank installed with honeycomb structure[84]

    图  25  陶瓷/液舱复合结构[112]

    Figure  25.  Sketch of ceramic/fluid cabin composite structrues[112]

  • [1] 朱锡, 张振华, 梅志远, 等. 舰船结构毁伤力学[M]. 北京: 国防工业出版社, 2013: 21−22.
    [2] WEBSTER K G. Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary Lagrangian Eulerian finite element method [D]. Virginia: Virginia Polytechnic Institute and State University, 2007: 4−14.
    [3] 陈永念. 舰船水下爆炸数值仿真及抗爆结构研究[D]. 上海: 上海交通大学, 2008: 1−4.
    [4] 陆超. 总体设计 [J]. 舰船知识, 2016, 8: 56–63.

    LU C. Overall design [J]. Naval and Merchant Ships, 2016, 8: 56–63.
    [5] 刘建湖, 周心桃, 潘建强, 等. 舰艇抗爆抗冲击技术现状和发展途径 [J]. 中国舰船研究, 2016, 11(1): 46–56; 71. DOI: 10.3969/j.issn.1673-3185.2016.01.007.

    LIU J H, ZHOU X T, PAN J Q, et al. The state analysis and technical development routes for the anti-explosion and shock technology of naval ships [J]. Chinese Journal of Ship Research, 2016, 11(1): 46–56; 71. DOI: 10.3969/j.issn.1673-3185.2016.01.007.
    [6] 姚熊亮, 刘文韬, 张阿漫, 等. 水下爆炸气泡及其对结构毁伤研究综述 [J]. 中国舰船研究, 2016, 11(1): 36–45. DOI: 10.3969/j.issn.1673-3185.2016.01.006.

    YAO X L, LIU W T, ZHANG A M, et al. Review of the research on underwater explosion bubbles and the corresponding structure damage [J]. Chinese Journal of Ship Research, 2016, 11(1): 36–45. DOI: 10.3969/j.issn.1673-3185.2016.01.006.
    [7] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展 [J]. 中国舰船研究, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.

    ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures [J]. Chinese Journal of Ship Research, 2019, 14(3): 1–13. DOI: 10.19693/j.issn.1673-3185.01608.
    [8] 黄超. 近场非接触水下爆炸舰船新型防护结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2009: 3−7.
    [9] COLE R H. Underwater Explosion [M]. New Jersy: Princeton: Princeton University Press, 1948: 5−9.
    [10] 周章涛, 刘建湖, 裴红波, 等. 水下近距和接触爆炸流固耦合作用机理及加载效应研究 [J]. 兵工学报, 2017, 38(S1): 136–145. DOI: CNKI:SUN:BIGO.0.2017-S1-019.

    ZHOU Z T, LIU J H, PEI H B, et al. Fluid-structure interaction mechanism and loading effect in close-in and contact underwater explosions [J]. Acta Armamentarii, 2017, 38(S1): 136–145. DOI: CNKI:SUN:BIGO.0.2017-S1-019.
    [11] 牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板的毁伤模式 [J]. 爆炸与冲击, 2009, 29(5): 457–462. DOI: 10.11883/1001-1455(2009)05-0457-06.

    MU J L, ZHU X, ZHANG Z H, et al. Failure modes of stiffened plates subjected to underwater explosion [J]. Explosion and Shock Waves, 2009, 29(5): 457–462. DOI: 10.11883/1001-1455(2009)05-0457-06.
    [12] ZAMYSHLYAYEV B V. Dynamic loads in underwater explosion: AD-757183 [R]. Suitland: Naval Intelligence Support Center, 197.
    [13] 张显丕, 刘建湖, 潘建强, 等. 装药水下接触爆炸驱动能力测量技术研究 [J]. 中国测试, 2018, 44(10): 22–27. DOI: 10.11857/j.issn.1674-5124.2018.10.003.

    ZHANG X P, LIU J H, PAN J Q, et al. Investigation on measurement technology of driving capability for underwater contact explosion [J]. China Measurement and Test, 2018, 44(10): 22–27. DOI: 10.11857/j.issn.1674-5124.2018.10.003.
    [14] 盛振新, 刘建湖, 毛海斌, 等. 水下接触爆炸对舷侧空舱结构破坏载荷测试技术研究 [J]. 中国测试, 2018, 44(12): 6–11. DOI: 10.11857/j.issn.1674-5124.2018.12.002.

    SHENG Z X, LIU J H, MAO H B, et al. Measurement technology research on damage load on broadside cabin subjected to underwater contact explosion [J]. China Measurement and Test, 2018, 44(12): 6–11. DOI: 10.11857/j.issn.1674-5124.2018.12.002.
    [15] 陈卫东, 王飞, 陈浩. 舰船舷侧结构水下抗爆试验和机理研究 [J]. 中国造船, 2009, 50(3): 65–73. DOI: 10.3969/j.issn.1000-4882.2009.03.008.

    CHEN W D, WANG F, CHEN H. Research on blast resistance mechanism of warship broadside defensive structure subjected to underwater contact explosion [J]. Shipbuilding of China, 2009, 50(3): 65–73. DOI: 10.3969/j.issn.1000-4882.2009.03.008.
    [16] 苏怡然. 水下接触爆炸作用下双层防护结构瞬态动力分析方法研究[D]. 上海: 上海交通大学, 2013: 1−8.
    [17] 张阿漫, 王诗平, 刘云龙, 等. 水下爆炸气泡及后期涌流数值模拟 [C]// 第十届全国流体力学青年研讨会论文集. 天津: 中国力学学会, 2017: 40-43.
    [18] 张伦平, 张晓阳, 潘建强, 等. 多舱防护结构水下接触爆炸吸能研究 [J]. 船舶力学, 2011, 15(8): 921–929. DOI: 10.3969/j.issn.1007-7294.2011.08.013.

    ZHANG L P, ZHANG X Y, PAN J Q, et al. Energy research about multicamerate defence structure subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2011, 15(8): 921–929. DOI: 10.3969/j.issn.1007-7294.2011.08.013.
    [19] FRIEDMAN N, BAKER A D. US aircraft carriers: an illustrated design history [M]. Maryland: Naval Institute Press, 1983: 42−82.
    [20] 金键, 朱锡, 侯海量, 等. 水下爆炸载荷下舰船响应与毁伤研究综述 [J]. 水下无人系统学报, 2017, 25(5): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.

    JIN J, ZHU X, HOU H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load [J]. Journal of Unmanned Undersea Systems, 2017, 25(5): 396–409. DOI: 10.11993/j.issn.2096-3920.2017.05.002.
    [21] 杜志鹏, 李晓彬, 夏利娟, 等. 舰船防护水舱在接近爆炸载荷作用下响应的理论研究 [J]. 船舶力学, 2007, 11(1): 119–127. DOI: 10.3969/j.issn.1007-7294.2007.01.015.

    DU Z P, LI X B, XIA L J, et al. Theory research on the response of the warship protective tank under near- by explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 119–127. DOI: 10.3969/j.issn.1007-7294.2007.01.015.
    [22] 张振华. 舰艇结构水下抗爆能力研究[D]. 武汉: 海军工程大学, 2004: 112−123.
    [23] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究 [J]. 爆炸与冲击, 2004, 24(2): 133–139.

    ZHU X, ZHANG Z H, LIU R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Explosion and Shock waves, 2004, 24(2): 133–139.
    [24] 张振华, 朱锡, 黄玉盈, 等. 水面舰艇舷侧防雷舱结构水下抗爆防护机理研究 [J]. 船舶力学, 2006, 10(1): 113–119. DOI: 10.3969/j.issn.1007-7294.2006.01.015.

    ZHANG Z H, ZHU X, HUANG Y Y, et al. Theoretical research on the defendence of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2006, 10(1): 113–119. DOI: 10.3969/j.issn.1007-7294.2006.01.015.
    [25] 陈卫东, 于诗源, 王飞, 等. 多层板壳结构在水下接触爆炸载荷作用下的试验研究 [J]. 哈尔滨工程大学学报, 2009, 30(1): 19–22. DOI: 10.3969/j.issn.1006-7043.2009.01.004.

    CHEN W D, YU S Y, WANG F, et al. Experimental study of multilayer shell structures in underwater contact explosions [J]. Journal of Harbin Engineering University, 2009, 30(1): 19–22. DOI: 10.3969/j.issn.1006-7043.2009.01.004.
    [26] ZHANG J, SHI X H, SOARES C G. Experimental study on the response of multi-layered protective structure subjected to underwater contact explosions [J]. International Journal of Impact Engineering, 2017, 100: 23–34. DOI: 10.1016/j.ijimpeng.2016.10.004.
    [27] 徐定海, 盖京波, 王善, 等. 防护模型在接触爆炸作用下的破坏 [J]. 爆炸与冲击, 2008, 28(5): 476–480. DOI: 10.11883/1001-1455(2008)05-0476-05.

    XU D H, GAI J B, WANG S, et al. Deformation and failure of layered defense models subjected to contact explosive load [J]. Explosion and Shock Waves, 2008, 28(5): 476–480. DOI: 10.11883/1001-1455(2008)05-0476-05.
    [28] 郭百森. 舰船舷侧典型防护结构抗爆抗冲击研究[D]. 哈尔滨: 哈尔滨工程大学, 2009: 56−63. DOI: 10.7666/d.y1655195.
    [29] CARDOSO D, TEIXEIRA-DIAS F. Modelling the formation of explosively formed projectiles (EFP) [J]. International Journal of Impact Engineering, 2016, 93: 116–127. DOI: 10.1016/j.ijimpeng.2016.02.014.
    [30] 杨莉, 张庆明, 汪玉等. 反舰聚能战斗部装药结构研究 [J]. 兵工学报, 2009(S2): 154–158.

    YANG L, ZHANG Q M, WANG Y, et al. Research on shaped charge warhead of anti-ship missile [J]. Acta Armamentarii, 2009(S2): 154–158.
    [31] 王长利, 马坤, 周刚, 等. 防雷舱结构在聚能装药水下爆炸作用下的毁伤研究 [J]. 爆炸与冲击, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.

    WANG C L, MA K, ZHOU G, et al. Damage effect of cabin near shipboard under shaped charge exploding underwater [J]. Explosion and Shock waves, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.
    [32] 王长利, 周刚, 马坤, 等. 典型含水复合结构在聚能装药水下爆炸作用下的毁伤 [J]. 船舶力学, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.

    WANG C L, ZHOU G, MA K, et al. Damage anlysis of typical water partitioned structure under shaped charge underwater explosion [J]. Journal of Ship Mechanics, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.
    [33] KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65(2): 146–162. DOI: 10.1016/j.ijimpeng.2013.11.009.
    [34] ZHANG A M, YANG W S, YAO X L. Numerical simulation of underwater contact explosion [J]. Applied Ocean Research, 2012, 34: 10–20. DOI: 10.1016/j.apor.2011.07.009.
    [35] 杨文山. 水下接触爆炸舰船局部毁伤及防护机理[D]. 哈尔滨: 哈尔滨工程大学, 2011: 18−32. .
    [36] 于诗源. 舰船防护结构的水下接触爆炸模型试验研究及数值计算[D]. 哈尔滨: 哈尔滨工程大学, 2007: 23−26. DOI: 10.7666/d.y1097386.
    [37] 唐廷, 朱锡, 侯海量, 等. 大型水面舰艇防雷舱结构防护机理数值仿真 [J]. 哈尔滨工程大学学报, 2012, 33(2): 142–149. DOI: 10.3969/j.issn.1006-7043.201012064.

    TANG T, ZHU X, HOU H L, et al. Numerical simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels [J]. Journal of Harbin Engineering University, 2012, 33(2): 142–149. DOI: 10.3969/j.issn.1006-7043.201012064.
    [38] 尹群, 董能超, 王珂. 舷侧多舱防护结构抗冲击性能数值研究 [J]. 江苏科技大学学报(自然科学版), 2017, 31(1): 18–25. DOI: 10.3969/j.issn.1673-4807.2017.01.004.

    YIN Q, DONG N C, WANG K. Numerical research on the impact resistance of the multicamerate defence structure [J]. Journal of Jiangsu University of Sience and Technology (Science Edition), 2017, 31(1): 18–25. DOI: 10.3969/j.issn.1673-4807.2017.01.004.
    [39] 蔡金志, 王善, 盖京波, 等. 舰船舷侧在水下接触爆炸作用下的数值仿真 [J]. 系统仿真学报, 2007, 19(11): 2404–2406. DOI: 10.3969/j.issn.1004-731X.2007.11.003.

    CAI J Z, WANG S, GAI J B, et al. Numerical simulation of naval panels subjected to underwater explosion loading [J]. Journal of System Simulation, 2007, 19(11): 2404–2406. DOI: 10.3969/j.issn.1004-731X.2007.11.003.
    [40] 李世铭. 舰船水下接近爆炸多层结构毀伤特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2012: 68−71. .
    [41] 孙逸. 水下接触爆炸载荷作用下舰船防护结构研究[D]. 哈尔滨: 哈尔滨工程大学, 2005: 47−55. DOI: 10.7666/d.y936882.
    [42] 金键, 侯海量, 陈鹏宇等. 水下接触爆炸下液舱前置型防雷舱的动响应分析 [J]. 国防科学技术大学学报, 2018, 40(3): 142–147. DOI: 10.11887/j.cn.201803022.

    JIN J, HOU H L, CHEN P Y, et al. Dynamic responses analysis of pre-liquid cabin of multi-layered protective structure subjected to underwater contact explosions [J]. Journal of National University of Defense Science and Technology, 2018, 40(3): 142–147. DOI: 10.11887/j.cn.201803022.
    [43] 张婧, 施兴华, 王善. 水下接触爆炸作用下舰船防护结构中液舱影响仿真分析 [J]. 天津大学学报, 2008, 41(10): 1238–1244. DOI: 10.3969/j.issn.0493-2137.2008.10.018.

    ZHANG J, SHI X H, WANG S. Numerical simulation analysis of liquid cabin of ship defensive structure subjected to underwater contact explosion [J]. Journal of Tianjin University, 2008, 41(10): 1238–1244. DOI: 10.3969/j.issn.0493-2137.2008.10.018.
    [44] 郭绍静. 新型舷侧水下及水上防护结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2010: 32−59. DOI: 10.7666/d.y1808218.
    [45] 叶珍周, 张玮, 李营, 等. 舰船舷侧夹层板防护结构抗爆性能研究及其优化[C]// 中国力学大会-2015论文摘要集. 上海: 中国力学学会, 2015.
    [46] 王耀辉, 陈海龙, 岳永威, 等. 水下接触爆炸作用下的船体板架结构毁伤研究 [J]. 中国舰船研究, 2012, 7(4): 76–82. DOI: 10.3969/j.issn.1673-3185.2012.04.013.

    WANG Y H, CHEN H L, YUE Y W, et al. Damage study on ship plate frame subjected to the underwater contact explosion [J]. Chinese Journal of Ship Research, 2012, 7(4): 76–82. DOI: 10.3969/j.issn.1673-3185.2012.04.013.
    [47] 陈海龙, 周姝, 孙丰, 等. 水下接触爆炸对舰船壳板的毁伤试验效果估算方法评估 [J]. 舰船科学技术, 2013, 35(10): 33–37. DOI: 10.3404/j.issn.1672-7649.2013.10.008.

    CHEN H L, ZHOU Z, SUN F, et al. Estimation on estimation method of warship shell experimental damage subjected to underwater contact explosion [J]. Ship Science and Technology, 2013, 35(10): 33–37. DOI: 10.3404/j.issn.1672-7649.2013.10.008.
    [48] 孟祥岭. 水雷兵器总体设计原理[M]. 武汉: 海军工程学院印刷厂, 1982.
    [49] 刘润泉, 白雪飞, 朱锡. 舰船单元结构模型水下接触爆炸破口试验研究 [J]. 海军工程大学学报, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.

    LIU R Q, BAI X F, ZHU X. Breach experiment research of vessel element structure models subjected to underwater contact explosion [J]. Journal of Naval University of Engineering, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.
    [50] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验 [J]. 中国造船, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.

    ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion [J]. Shipbuilding of China, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.
    [51] 浦金云, 邱金水, 程智斌. 舰船生命力 [M]. 北京: 海潮出版社, 2001.
    [52] KEIL A H. Introduction to underwater explosion research [R]. Portsmouth, Virginia: UERD, Norfolk Naval Ship Yard, 1956.
    [53] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8.
    [54] ACKLAND K, ANDERSON C, NGO T D. Deformation of polyurea-coated steel plates under localised blast loading [J]. International Journal of Impact Engineering, 2013, 51(1): 13–22. DOI: 10.1016/j.ijimpeng.2012.08.005.
    [55] 代利辉, 吴成, 安丰江, 等. 水下爆炸载荷作用下聚脲材料对钢结构防护效果研究 [J]. 中国测试, 2018, 44(10): 157–163. DOI: 10.11857/j.issn.1674-5124.2018.10.027.

    DAI L H, WU C, AN F J, et al. Investigation on the protection effect of polyurea-coated steel plates at underwater explosion loading [J]. China Measurement and Test, 2018, 44(10): 157–163. DOI: 10.11857/j.issn.1674-5124.2018.10.027.
    [56] 汪家铭. 聚脲弹性体的发展概况与前景 [J]. 化学工业, 2009, 27(10): 17–21. DOI: 10.3969/j.issn.1673-9647.2009.10.005.

    WANG J M. Development and perspective of polyurea elastomer [J]. Chemical Industry, 2009, 27(10): 17–21. DOI: 10.3969/j.issn.1673-9647.2009.10.005.
    [57] SAMIEE A, AMIRKHIZI A V, NEMAT-NASSER S. Numerical study of the effect of polyurea on the performance of steel plates under blast loads [J]. Mechanics of Materials, 2013, 64: 1–10. DOI: 10.1016/j.mechmat.2013.03.008.
    [58] REMENNIKOV A, NGO T, MOHOTTI D, et al. Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges [J]. International Journal of Impact Engineering, 2017, 101: 78–89. DOI: 10.1016/j.ijimpeng.2016.11.013.
    [59] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性 [J]. 爆炸与冲击, 2017, 37(4): 719–726. DOI: 10.11883/1001-1455(2017)04-0719-08.

    WU L J, HOU H L, ZHU X, et al. Internal load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion [J]. Explosion and Shock waves, 2017, 37(4): 719–726. DOI: 10.11883/1001-1455(2017)04-0719-08.
    [60] 陈鹏宇, 侯海量, 吴林杰, 等. 水下舷侧多层防护隔舱接触爆炸毁伤载荷特性分析 [J]. 爆炸与冲击, 2017, 37(2): 283–290. DOI: 10.11883/1001-1455(2017)02-0283-08.

    CHEN P Y, HOU H L, WU L J, et al. Analysis of the damage load of the underwater contact explosion on multi-layered defend cabins [J]. Explosion and Shock Waves, 2017, 37(2): 283–290. DOI: 10.11883/1001-1455(2017)02-0283-08.
    [61] 罗振敏, 苏彬, 王涛, 等. 矿井瓦斯控爆技术及材料研究进展 [J]. 中国安全生产科学技术, 2019(2): 17–24. DOI: 10.11731/j.issn.1673-193x.2019.02.003.

    LUO Z M, SU B, WANG T, et al. Research progress on explosion control technology and materials of mining gas [J]. Journal of Safety Science and Technology, 2019(2): 17–24. DOI: 10.11731/j.issn.1673-193x.2019.02.003.
    [62] VAN DER WAL R, CARGILL S, LONGBOTTOM A, et al. Explosion mitigation by water mist [C]// Proceedings of the 21st International Symposium on Military Aspects of Blast and Shock. Jerusalem, Israel, 2010.
    [63] SCHWER D, KAILASANATH K. Blast mitigation by water mist: (3) mitigation of confined and unconfined blasts: NRL/MR/6410-06-8976 [R]. Washington DC, US: Naval Research Laboratory, 2006.
    [64] THOMAS G O. On the conditions required for explosion mitigation by water sprays [J]. Process Safety and Environment Protection, 2000, 78(5): 339–354. DOI: 10.1205/095758200530862.
    [65] WILLAUER H D, ANANTH R, FARLEY J P, et al. Mitigation of TNT and Destex explosion effects using water mist [J]. Journal of Hazardous Materials, 2009, 165(1−3): 1068–1073. DOI: 10.1016/j.jhazmat.2008.10.130.
    [66] 陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究 [J]. 兵工学报, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.

    CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigating effect of water mist on the explosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
    [67] BAILEY J L, FARLEY J P, WILLIAMS F W, et al. Blast mitigation using water mist: NRL/MR/6180-06-8933 [R]. Arlington, TX, US: Navy Research Laboratory, 2006.
    [68] 李思宇, 李晓彬, 赵鹏铎, 等. 近爆载荷作用下液舱的吸能研究 [J]. 中国舰船研究, 2017, 12(1): 101–106. DOI: 10.3969/j.issn.1673-3185.2017.01.015.

    LI S Y, LI X B, ZHAO P D, et al. Reseaarch into energy absorption of liquid cabin subjected to close-range explosion [J]. Chinese Journal of Ship Research, 2017, 12(1): 101–106. DOI: 10.3969/j.issn.1673-3185.2017.01.015.
    [69] SCHIFFER A, TAGARIELLI V L. The one-dimensional response of a water-filled double hull to underwater blast: experiments and simulation [J]. International Journal of Impact Enginering, 2014, 63: 177–187. DOI: 10.1016/j.ijimpeng.2013.08.011.
    [70] TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [M]// BACHELOR G K. The Scientific Papers of Sir Geoffrey Ingram Taylor, Vol. III: Aerodynamics and the Mechanics of Projectiles and Explosions. Cambridge: Cambridge University Press, 1963: 287-303.
    [71] BALL R E. The fundamentals of aircraft combat survivability: analysis and design [J]. American Institute of Aeronautics and Astronautics, 2003.
    [72] DEAR J P, FIELD J E. High-speed photography of surface geometry effects in liquid/solid impact [J]. Journal of Applied Physics, 1988, 63(4): 1015–1021. DOI: 10.1063/1.340000.
    [73] FIELD J E. The physics of liquid impact, shock wave interactions with cavities, and the implications to shock wave lithotripsy [J]. Physics in Medicine and Biology, 1991, 36(11): 1475–1484. DOI: 10.1088/0031-9155/36/11/007.
    [74] KWON Y W, YANG K, ADAMS C. Modeling and simulation of high-velocity projectile impact on storage tank [J]. Journal of Pressure Vessel Technology, 2016, 138(4): 041303. DOI: 10.1115/1.4032447.
    [75] MCMILLEN J H. Shock wave pressures in water produced by impact of small spheres [J]. Physical Review, 1945, 68(9-10): 198–209. DOI: 10.1103/PhysRev.68.198.
    [76] MCMILLEN J H, HARVEY E N. A spark shadowgraphic study of body waves in water [J]. Journal of Applied Physics, 1946, 17(7): 541–555. DOI: 10.1063/1.1707751.
    [77] 唐廷, 朱锡, 侯海量, 等. 高速破片在防雷舱结构中引起的冲击荷载的理论研究 [J]. 振动与冲击, 2013, 32(6): 132–136. DOI: 10.3969/j.issn.1000-3835.2013.06.025.

    TANG T, ZHU X, HOU H L, et al. Shock loading induced by high speed fragment in cabin near shipboard [J]. Journal of Vibration and Shock, 2013, 32(6): 132–136. DOI: 10.3969/j.issn.1000-3835.2013.06.025.
    [78] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81–91. DOI: 10.1016/j.ijimpeng.2008.04.006.
    [79] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers [J]. Journal of Fluids and Structures, 2013, 37: 1–21. DOI: 10.1016/j.jfluidstructs.2012.11.003.
    [80] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(6): 821–829. DOI: 10.1016/j.ijimpeng.2008.12.009.
    [81] REN P, ZHOU J Q, TIAN A L, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact [J]. International Journal of Impact Engineering, 2018, 117: 153–163. DOI: 10.1016/j.ijimpeng.2018.03.009.
    [82] KUTTRUFF K H. Pressure-induced interaction between bubbles in a cavitation field [J]. The Journal of the Acoustical Society of America, 1999, 106(1): 190–194. DOI: 10.1121/1.427048.
    [83] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact [J]. Composite Structures, 2011, 93(10): 2598–2609. DOI: 10.1016/j.compstruct.2011.04.025.
    [84] ARTERO-GUERRERO J A, VARAS D, PERNAS-SÁNCHEZ J, et al. Experimental analysis of an attenuation method for Hydrodynamic Ram effects [J]. Materials and Design, 2018, 155: 451–462. DOI: 10.1016/j.matdes.2018.06.020.
    [85] FOUREST T, LAURENS J M, DELETOMBE E, et al. Analysis of bubbles dynamics created by hydrodynamic Ram in confined geometries using the Rayleigh-Plesset equation [J]. International Journal of Impact Engineering, 2014, 73(11): 66–74. DOI: 10.1016/j.ijimpeng.2014.05.008.
    [86] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. DOI: 10.1016/j.ijimpeng.2004.04.012.
    [87] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. DOI: 10.1016/j.ijimpeng.2009.02.008.
    [88] MARCHAND K A, VARGAS M M, NIXON J D. The synergistic effects of combined blast and fragment loadings [R]. San Antonio: Southwest Research Institute, 1992.
    [89] ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading [J]. Engineering Structures, 2017, 151: 459–471. DOI: 10.1016/j.engstruct.2017.08.039.
    [90] HU W, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM [J]. International Journal of Impact Engineering, 2006, 32(12): 2066–2096. DOI: 10.1016/j.ijimpeng.2005.05.004.
    [91] CHENG M, HUNG K C, CHONG O Y. Numerical study of water mitigation effects on blast wave [J]. Shock Waves, 2005, 14(3): 217–223. DOI: 10.1007/s00193-005-0267-4.
    [92] CHONG W K, LAM K Y, YEO K S, et al. A comparison of simulation’s results with experiment on water mitigation of an explosion [J]. Shock and Vibration, 1999, 6(2): 790873. DOI: 10.1155/1999/146458.
    [93] CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003.
    [94] BORNSTEIN H, PHILLIPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222–228. DOI: 10.1016/j.ijimpeng.2014.08.014.
    [95] BORNSTEIN H, RYAN S, MOURITZ A. Physical mechanisms for near-field blast mitigation with fluid containers: Effect of container geometry [J]. International Journal of Impact Engineering, 2016, 96: 61–77. DOI: 10.1016/j.ijimpeng.2016.04.015.
    [96] 李营, 任广为, 张玮, 等. 水介质对舱内爆炸抑制作用的实验研究 [J]. 爆炸与冲击, 2017, 37(6): 1080–1086. DOI: 10.11883/1001-1455(2017)06-1080-07.

    LI Y, REN G W, ZHANG W, et al. Water mitigation effect under internal blast [J]. Explosion and Shock Waves, 2017, 37(6): 1080–1086. DOI: 10.11883/1001-1455(2017)06-1080-07.
    [97] ZAKRAJSEK A, MIKLASZEWSKI E, SON S. Experimental and computational study of water blast mitigation associated with different water configurations [C]// Proceedings of the 17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter. Chicago, Illinois: APS, 2011.
    [98] ZAKRAJSEK A J, MIKLASZEWSKI E J, GUILDENBECHER D R, et al. Experimental analysis of blast mitigation associated with water sheets [J]. AIP Conference Proceedings, 2012, 1426(1): 92−95. DOI: 10.1063/1.3686229.
    [99] BORNSTEIN H, RYAN S, MOURITZ A P. Blast mitigation with fluid Containers: Effect of mitigant type [J]. International Journal of Impact Engineering, 2018, 113: 106–117. DOI: 10.1016/j.ijimpeng.2017.11.012.
    [100] 张弩, 吴林杰, 吴国民, 等. 水下接触爆炸下单层与双层液舱防雷舱结构防护能力对比研究 [J]. 兵工学报, 2018, 39(增1): 77–83.

    ZHANG N, WU L J, WU G M, et al. Comparative research on protection capabilities of mine-resistant structures of single-and double-layered liquid cabins subjected to underwater contact explosion [J]. Acta Armamentarii, 2018, 39(S1): 77–83.
    [101] 蔡斯渊, 侯海量, 吴林杰. 隔层设置对防雷舱液舱防护能力的影响 [J]. 哈尔滨工程大学学报, 2016, 37(4): 527–532. DOI: 10.11990/jheu.201412040.

    CAI S Y, HOU H L, WU L J. Influence of installed interlayers on defensive efficiency of a warship’s liquid cabin [J]. Journal of Harbin Engineering University, 2016, 37(4): 527–532. DOI: 10.11990/jheu.201412040.
    [102] CHEN Y, HUANG W, CONSTANTINI S. Blast shock wave mitigation using the hydraulic energy redirection and release technology [J]. PloS one, 2012, 7(6): e39353. DOI: 10.1371/journal.pone.0039353.
    [103] MCCALLUM S C, TOWNSEND D D, MCCALLUM S. Simulation of hydrodynamic ram and liquid aeration [C] //Proceedings of the 5th European LS-DYNA Users Conference. Birmingham, 2005.
    [104] GRUJICIC M, PANDURANGAN B, ZHAO C L, et al. A computational investigation of various Water-induced explosion mitigation mechanisms [J]. Multidiscipline Modeling in Materials and Structures, 2007, 3(2): 185–212. DOI: 10.1163/157361107780744405.
    [105] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact [J]. International Journal of Impact Engineering, 2003, 29(1−10): 723–733. DOI: 10.1016/j.ijimpeng.2003.10.019.
    [106] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank [J]. International Journal of Impact Engineering, 2011, 38(2−3): 61–72. DOI: 10.1016/j.ijimpeng.2010.10.006.
    [107] 孔祥韶, 王旭阳, 徐敬博, 等. 复合防护液舱抗爆效能对比试验研究 [J]. 兵工学报, 2018, 39(12): 2438–2449. DOI: 10.3969/j.issn.1000-1093.2018.12.018.

    KONG X S, WANG X Y, XU J B, et al. Comparative experimental study of anti-explosion performance of compound protective liquid cabin [J]. Acta Armamentarii, 2018, 39(12): 2438–2449. DOI: 10.3969/j.issn.1000-1093.2018.12.018.
    [108] ZABEL P H. Test evaluation of shock buffering concept for hydrodynamic ram induced by yawing projectile impacting a simulated Integral fuel tank [R]. Washington, DC: Naval Research Laboratory, 1979.
    [109] COPLAND A. Hydrodynamic ram attenuation: ARBRL-MR-03246 [R]. US Army Ballistic Research Laboratory. 1983.
    [110] BLESS S J, BARBER J P, FRY P F, et al. Studies of hydrodynamic ram induced by high velocity spherical fragment simulators: Technical Report AFML-TR-77-11 [R]. Dayton University OH Research Institute, 1977.
    [111] LIU F, KONG X, ZHENG C, et al. The influence of rubber layer on the response of fluid-filled container due to high-velocity impact [J]. Composite Structures, 2018, 183: 671–681. DOI: 10.1016/j.compstruct.2017.09.005.
    [112] 仲强, 侯海量, 李典. 陶瓷/液舱复合结构抗侵彻机理试验研究 [J]. 船舶力学, 2017, 21(10): 1282–1290. DOI: 10.3969/j.issn.1007-7294.2017.10.012.

    ZHONG Q, HOU H L, LI D. Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure [J]. Journal of Ship Mechanics, 2017, 21(10): 1282–1290. DOI: 10.3969/j.issn.1007-7294.2017.10.012.
    [113] 仲强, 侯海量, 朱锡, 等. 陶瓷/液舱复合结构抗侵彻数值分析 [J]. 爆炸与冲击, 2017, 37(3): 510–519. DOI: 10.11883/1001-1455(2017)03-0510-10.

    ZHONG Q, HOU H L, ZHU X, et al. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure [J]. Explosion and Shock Waves, 2017, 37(3): 510–519. DOI: 10.11883/1001-1455(2017)03-0510-10.
    [114] BLESS S J. Fuel tank survivability for hydrodynamic ram induced by high velocity fragments: Part I: experimental results and design summary: AFFDL-TR-78-182 [R]. 1979.
  • 加载中
图(25)
计量
  • 文章访问数:  1784
  • HTML全文浏览量:  1453
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-10-02
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回